Mining Structured Sparsity Beyond Convexity

Jiayu Zhou Michigan State University

Pinghua Gong, Zheng Wang, Jieping Ye University of Michigan

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Mining High-Dimensional Data

QFDACCFIDDVSKIYG-DYGPI QFDACCFIDDVSKIYG-DHGPI QFGACCFIDDVSKIFRLHDGPI QFDAC-FIDDVSKIFRLHDGPI RFDASCFIDDVSKIFRLHDGPI QFSVYCLIDDVSKIYR-HDGPN QFPVFCLIDDLSKIYR-HDGPV QFPARCFIDDLSKIYR-HDGQV QFDARCFIDDLSKIYR-HDGQV QFDARCFIDDLSKIYR-HDGPI RFDACCFIDDVSKICK-HDGPV

Dimensionality Reduction

- Dimensionality reduction algorithms
 - Feature Extraction
 - Feature Selection

SIAM Data Mining 2007 Tutorial (Yu, Ye, and Liu): "Dimensionality Reduction for Data Mining - Techniques, Applications, and Trends"

Sparse Learning

- We focus on sparse learning in this tutorial
 - Embed dimensionality reduction into data mining tasks
 - Flexible models for complex feature structures
 - Strong theoretical guarantee
 - Empirical success in many applications
 - Recent progress on efficient implementations

What is Sparsity

- Many data mining tasks can be represented using a vector or a matrix.
- "Sparsity" implies many zeros in a vector or a matrix.

Human Anatomy

Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt van Rijn, 1632.

Biomedical Imaging

X-Ray,1895

1901 Nobel Prize in Physics Wilhelm Röntgen's

Hand des Anatomen Geheimrath von Kölliker. Im Physikal, Institut der Universität Würzhurg mit X.-Strahlen aufgenommen von Professor Dr. W. C. Röntgen.

Biomedical Imaging

X-Ray,1895

1901 Nobel Prize in Physics Wilhelm Röntgen's

Computed Tomography (CT), 1967

1979 Nobel Prize in Physiology or Medicine Allan M. Cormack and Godfrey N. Hounsfield

Biomedical Imaging

X-Ray,1895

1901 Nobel Prize in Physics Wilhelm Röntgen's

Computed Tomography (CT), 1967

1979 Nobel Prize in Physiology or Medicine Allan M. Cormack and Godfrey N. Hounsfield

Magnetic Resonance Imaging (MRI), 1971

2003 Nobel Prize in Physiology or Medicine Paul Lauterbur and Sir Peter Mansfield

Magnetic Resonance Imaging

Structural

Diffusion

Functional

Magnetic Resonance Imaging (cont.)

• Acquire a digital object $x \in \mathbb{R}^p$ from *n* measurements:

$$y_i = \langle x, \varphi_i \rangle, i = 1, 2, \ldots, n$$

- Waveforms φ_i : Sinusoids

- *y* is a vector of Fourier coefficients (e.g., MRI)
- Recover the object from the measurements
 Sovling a linear system of equations

Magnetic Resonance Imaging (cont.)

Compressive Sensing

- Is accurate reconstruction possible from n<<p measurements only?
 - Few sensors
 - Measurements are very expensive
 - Sensing process is slow
 - Save lives

Motivation: Signal Acquisition

- Conventional wisdom: reconstruction is
 impossible
 - Number of measurements must match the number of unknowns

Generalization: Signal Acquisition

• Wish to acquire a digital object $x \in \mathbb{R}^p$ from *n* measurements:

$$y_i = \langle x, \varphi_i \rangle, i = 1, 2, \ldots, n$$

- Waveforms φ_i
 - Dirac delta functions (spikes)
 - *y* is a vector of sampled values of *x* in the time or space domain
 - Indicator functions of pixels
 - *y* is the image data typically collected by sensors in a digital camera
 - Sinusoids
 - *y* is a vector of Fourier coefficients (e.g., MRI)

Motivation: Signal Acquisition (cont.)

 Many natural signals are sparse or compressible in the sense that they have concise representations when expressed in the proper basis

Megapixel image represented as **2.5%** largest wavelet coefficients

(Candes and Wakin, 2008)

MRI by Compressive Sensing

Sparsity

- Dominant modeling tool
 - Genomics
 - Genetics
 - Signal and audio processing
 - Image processing
 - Neuroscience (theory of sparse coding)
 - Machine learning
 - Data mining

. . .

Sparsity in Data Mining

• Regression, classification, collaborative filtering...

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Convex Sparse Learning Models

- Let x be the model parameter to be estimated. A commonly employed model for estimating x is min loss(x) + λ×penalty(x) (1)
- (1) is equivalent to the following model:

min loss(x)s.t. penalty(x) $\leq z$ (2)

Convex Sparse Learning Models

- Let x be the model parameter to be estimated. A commonly employed model for estimating x is min loss(x) + λ×penalty(x) (1)
 - Sparsity via L₁
 - Sparsity via L_1/L_q
 - Sparsity via Fused Lasso
 - Sparse Inverse Covariance Estimation
 - Sparsity via Trace Norm

The L₁ Norm Penalty

The L₁ Norm Penalty

- penalty(x)= $||x||_1 = \sum_i |x_i|$
 - Valid norm
 - Convex
 - Computationally tractable
 - Sparsity induced norm
 - Theoretical properties
 - Various Extensions

min loss(x) + $\lambda ||x||_0$

min loss(x) + $\lambda ||x||_1$

Why does L₁ Induce Sparsity?

Analysis in 1D (comparison with L₂)

Nondifferentiable at 0

Differentiable at 0

Why does L₁ Induce Sparsity?

Understanding from the projection

Why does L₁ Induce Sparsity?

Understanding from constrained optimization

(Bishop, 2006, Hastie et al., 2009)

 $\frac{1}{2} \|Ax - y\|_2^2 + \lambda \|x\|_1$

Simultaneous feature selection and regression

Application: Face Recognition

(Wright et al. 2009)

Use the computed sparse coefficients for classification

Application: Biomedical Informatics (Sun et al. 2009)

Elucidate a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis

From L_1 to L_1/L_q (q>1)?

Group Lasso (Yuan and Lin, 2006)

Group Feature Selection

brain region

functional group

categorical variable

Multi-Task/Class Learning via L₁/L_q

Writer-specific Character Recognition

(Obozinski, Taskar, and Jordan, 2006)

- Letter data set:
 - The letters are from more than 180 different writers
 - It has 8 tasks for discriminating letter c/e, g/y, g/s, m/n, a/g, i,/j, a/o. f/t, and h/n

The letter 'a' written by 40 different people

Fused Lasso

Application: Arracy CGH Data Analysis

(Tibshirani and Wang, 2008)

- Comparative genomic hybridization (CGH)
 - Measuring DNA copy numbers of selected genes on the genome
 - In cells with cancer, mutations can cause a gene to be either deleted or amplified
- Array CGH profile of two chromosomes of breast cancer cell line MDA157.

Sparse Inverse Covariance Estimation

Sparse Inverse Covariance Estimation

Undirected graphical model (Markov Random Field)

The pattern of zero entries in the inverse covariance matrix of a multivariate normal distribution corresponds to conditional independence restrictions between variables.

The SICE Model

Sparse Inverse Covariance Estimation

When S is invertible, directly maximizing the likelihood gives $X=S^{-1}$

Network Construction

- Biological networkSocial network
- Brain network

Equivalent matrix representation

Sparsity: Each node is linked to a small number of neighbors in the network.

Matrix Completion

	?	?	?	?	?		?	?	?
?	?		?		?	?	?	?	?
?	?	?	?	?	?	?	?		?
?	?	?		?	?	?	?	?	?
	?	?	?	?		?	?	?	
?		?	?	?	?	?	?		?
?	?	?	?	?		?	?	?	?
?	?	?		?	?	?	?		?

• Predict the missing values

The Netflix Problem Movies

Users		?	?	?	?	?		?	?	?
	?	?		?		?	?	?	?	?
	?	?	?	?	?	?	?	?		?
	?	?	?		?	?	?	?	?	?
		?	?	?	?		?	?	?	
	?		?	?	?	?	?	?		?
	?	?	?	?	?		?	?	?	?
	?	?	?		?	?	?	?		?

- About a million users and 25,000 movies
- Known ratings are sparsely distributed
- Predict unknown ratings

Preferences of users are determined by a small number of factors \rightarrow low rank

MICHIGAN STATE UNIVERSITY

Matrix Rank

- The number of independent rows or columns
- The singular value decomposition (SVD):

Optimization

$$\min_{\mathbf{w}\in\mathbb{R}^d}\left\{f(\mathbf{w})=l(\mathbf{w})+r(\mathbf{w})=\frac{1}{n}\sum_{i=1}^n l_i(\mathbf{w})+r(\mathbf{w})\right\},\$$

Name	Loss function $l_i(\mathbf{w})$
Least Squares	$\frac{1}{2}(y_i - \mathbf{x}_i^T \mathbf{w})^2$
Logistic Regression	$\log(1 + \exp(-y_i \mathbf{x}_i^T \mathbf{w}))$
Squared Hinge Loss	$\max(0, 1 - y_i \mathbf{x}_i^T \mathbf{w})^2$

Name	regularizer (penalty) $r(\mathbf{w})$
Lasso [49]	$\lambda \sum_{j=1}^{d} w_j $
Fused Lasso [50]	$\lambda_1 \sum_{j=1}^{d} w_j + \lambda_2 \sum_{j=1}^{d-1} w_j - w_{j+1} $
Graph Fused Lasso [8]	$\lambda_1 \sum_{j=1}^d w_j + \lambda_2 \sum_{(j,k) \in \mathcal{E}} w_j - w_k $
Group Lasso [65]	$\lambda \sum_{k=1}^{K} \ \mathbf{w}_{\mathcal{G}_k}\ $
Sparse Group Lasso [13, 44]	$\lambda_1 \sum_{j=1}^d w_j + \lambda_2 \sum_{k=1}^K \ \mathbf{w}_{\mathcal{G}_k}\ $
Tree Lasso [34, 24]	$\sum_{j=1}^{J} \sum_{k=1}^{K_j} \lambda_k^j \ \mathbf{w}_{\mathcal{G}_k^j} \ $

Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

min $f(x) = loss(x) + \lambda \times penalty(x)$

First Order Optimization

$$\begin{split} \mathbf{w}^{k+1} &= \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^d} \left\{ l(\mathbf{s}^k) + \nabla l(\mathbf{s}^k)^T (\mathbf{w} - \mathbf{s}^k) + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{s}^k\|^2 + r(\mathbf{w}) \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^d} \left\{ \frac{1}{2} \left\| \mathbf{w} - (\mathbf{s}^k - \alpha_k \nabla l(\mathbf{s}^k)) \right\|^2 + \alpha_k r(\mathbf{w}) \right\} \\ &= \operatorname{Prox}_{\alpha_k}^r \left(\mathbf{s}^k - \alpha_k \nabla l(\mathbf{s}^k) \right), \end{split}$$

- FISTA, SpaRSA
- How to efficiently solve the proximal operator problem?
- Closed-form solution for L1, L1/L2, analytical form for trace norm

Second Order Optimization

– Compute the descent direction:

$$\Delta \mathbf{w}^{k} = \underset{\Delta \mathbf{w} \in \mathbb{R}^{d}}{\operatorname{arg\,min}} \left\{ l(\mathbf{w}^{k}) + \nabla l(\mathbf{w}^{k})^{T} \Delta \mathbf{w} + \frac{1}{2} \Delta \mathbf{w}^{T} H^{k} \Delta \mathbf{w} + r(\mathbf{w}^{k} + \Delta \mathbf{w}) - r(\mathbf{w}^{k}) \right\},$$

where H^k is the (approximated) Hessian matrix of $l(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}^k$. - Iterate along the descent direction:

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \alpha_k \Delta \mathbf{w}^k.$$

How to efficiently solve the above subproblem?
 – Coordinate Descent, FISTA, SpaRSA

Stochastic Optimization

- Randomly pick a sample $i \in \{1, \dots, n\}$.
- Evaluate the gradient on the *i*-th sample and generate a sequence $\{\mathbf{w}^k\}$ via

$$\mathbf{w}^{k+1} = \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^d} \left\{ l(\mathbf{w}^k) + \nabla l_i(\mathbf{w}^k)^T(\mathbf{w} - \mathbf{w}^k) + \frac{1}{2\alpha_k} \|\mathbf{w} - \mathbf{w}^k\|^2 + r(\mathbf{w}) \right\}$$
$$= \operatorname*{arg\,min}_{\mathbf{w}\in\mathbb{R}^d} \left\{ \frac{1}{2} \left\| \mathbf{w} - (\mathbf{w}^k - \alpha_k \nabla l_i(\mathbf{w}^k)) \right\|^2 + \alpha_k r(\mathbf{w}) \right\}$$
$$= \operatorname{Prox}_{\alpha_k}^r \left(\mathbf{w}^k - \alpha_k \nabla l_i(\mathbf{w}^k) \right).$$

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Non-convex Sparse Models $\min_{\mathbf{w}\in\mathbb{R}^d} \{f(\mathbf{w}) = l(\mathbf{w}) + \lambda r(\mathbf{w})\}$ $l(\mathbf{w}) \text{ and } r(\mathbf{w}) \text{ may not be convex}$

MICHIGAN STATE UNIVERSITY

Different Non-convex Penalties

ℓ_1 -norm	$\lambda w_i $
LSP	$\lambda \log(1 + w_i /\theta) \ (\theta > 0)$
SCAD	$\lambda \int_0^{ w_i } \min\left(1, \frac{[\theta \lambda - x]_+}{(\theta - 1)\lambda}\right) dx \ (\theta > 2)$
	$ w_i , \text{if } w_i \le \lambda, $
	$= \begin{cases} \frac{-w_i^2 + 2\theta\lambda w_i - \lambda^2}{2(\theta - 1)}, & \text{if } \lambda < w_i \le \theta\lambda, \end{cases}$
	$(\theta + 1)\lambda^2/2, \text{if } w_i > \theta\lambda.$
MCP	$\lambda \int_0^{ w_i } \left[1 - \frac{x}{\theta \lambda} \right]_+ dx \ (\theta > 0)$
	$\int \lambda w_i - w_i^2 / (2\theta), \text{if } w_i \le \theta \lambda,$
	$= \left\{ \begin{array}{l} \theta \lambda^2/2, & \text{if } w_i > \theta \lambda. \end{array} \right.$
Capped ℓ_1	$\lambda \min(w_i , \theta) \ (\theta > 0)$

Non-convex Models: Advantages

- Better approximation of L₀-norm: reduce overpenalization
- Theoretical advantages of non-convex sparse learning models over the convex ones
 - Unbiased feature selection
 - Weak conditions to achieve oracle properties
 - Sharp parameter estimation bound
- Computational Challenges

Ref. J. Fan (2001, 2012), H. Zou (2008), X. Shen (2012) T. Zhang (2010,2012), C.H. Zhang (2010)

Example: Non-convex MTL Model

Pinghua Gong, Jieping Ye, Changshui Zhang. Multi-Stage Multi-Task Feature Learning. NIPS 2012.

Optimization Algorithm MSMTFL: Multi-Stage Multi-Task Feature Learning

$$1. \text{ Initialize } \lambda_j^{(0)} = \lambda$$

$$2. \ \hat{W}^{(\ell)} = \arg\min_{W \in \mathbb{R}^{d \times m}} \left\{ l(W) + \sum_{j=1}^d \lambda_j^{(\ell-1)} \|\mathbf{w}^j\|_1 \right\} \text{ reweighted Lasso}$$

$$3. \ \lambda_j^{(\ell)} = \lambda I(\|(\hat{\mathbf{w}}^{(\ell)})^j\|_1 < \theta) \ (j = 1, \cdots, d) \text{ penalize small rows}$$

Parameter Estimation Error Bound

$$\|\hat{W}^{(\ell)} - \bar{W}\|_{2,1} = 0.8^{\ell/2} O\left(m\sqrt{\bar{r}\ln(dm/\eta)/n}\right) + O\left(m\sqrt{\bar{r}/n + \ln(1/\eta)/n}\right)$$

Exponential shrinkage & stage-wise Improvement

MICHIGAN STATE UNIVERSITY

A General Solver

• Difference of Convex Programming

Multiple times of solving convex sub-problems!!

The convex sub-problem usually doesn't have a closed-form solution!!

GIST: General Iterative Shringkage and
Thresholding for Non-convex Problems

$$\min_{\mathbf{w} \in \mathbb{R}^d} \{f(\mathbf{w}) = l(\mathbf{w}) + \lambda r(\mathbf{w})\}$$

$$\mathbf{w}^{(k+1)} = \arg\min_{\mathbf{w}} \ l(\mathbf{w}^{(k)}) + \langle \nabla l(\mathbf{w}^{(k)}), \mathbf{w} - \mathbf{w}^{(k)} \rangle + \frac{t^{(k)}}{2} \|\mathbf{w} - \mathbf{w}^{(k)}\|^2 + \lambda r(\mathbf{w})$$

$$\mathbf{u}^{(k)} = \mathbf{w}^{(k)} - \nabla l(\mathbf{w}^{(k)})/t^{(k)}$$
Proximal
Operator
$$\mathbf{w}^{(k+1)} = \arg\min_{\mathbf{w}} \ \frac{1}{2} \|\mathbf{w} - \mathbf{u}^{(k)}\|^2 + \frac{\lambda}{t^{(k)}} r(\mathbf{w})$$
Closed-form solution: Capped L1, LSP, SCAD, MCP
Non-convex

Pinghua Gong, Jieping Ye, Changshui Zhang. A General Iterative and Shrinkage Thresholding Algorithm for Non-convex Regularized Problems. ICML 2013.

MICHIGAN STATE UNIVERSITY

Step Size Selection

Initialization: Barzilai-Borwein (BB) rule

$$\begin{aligned} \mathbf{x}^{(k)} &= \mathbf{w}^{(k)} - \mathbf{w}^{(k-1)} \qquad \mathbf{y}^{(k)} = \nabla l(\mathbf{w}^{(k)}) - \nabla l(\mathbf{w}^{(k-1)}) \\ t^{(k)} &= \arg\min_{t} \|t\mathbf{x}^{(k)} - \mathbf{y}^{(k)}\|^2 = \frac{\langle \mathbf{x}^{(k)}, \mathbf{y}^{(k)} \rangle}{\langle \mathbf{x}^{(k)}, \mathbf{x}^{(k)} \rangle} \end{aligned}$$

Line Search: Monotone & Non-monotone

$$f(\mathbf{w}^{(k+1)}) \le \max_{i=\max(0,k-m+1),\cdots,k} f(\mathbf{w}^{(i)}) - \frac{\sigma}{2} t^{(k)} \|\mathbf{w}^{(k+1)} - \mathbf{w}^{(k)}\|^2$$

Where $\sigma \in (0,1)$ is a constant

m=1: Monotone; m>1: Non-monotone

Assumptions

$$\min_{\mathbf{w}\in\mathbb{R}^d} \left\{ f(\mathbf{w}) = l(\mathbf{w}) + \lambda r(\mathbf{w}) \right\}$$

 \square A1: $l(\mathbf{w})$ is continuously differentiable with Lipschitz continuous gradient

\square A2: $r(\mathbf{w})$ is a continuous function with difference of two convex functions:

$$r(\mathbf{w}) = r_1(\mathbf{w}) - r_2(\mathbf{w})$$

\square A3: $f(\mathbf{w})$ is bounded from below

Example

Least Squares:

Logistic Regression:

Squared Hinge Loss:

$$l(\mathbf{w}) = \frac{1}{2n} ||X\mathbf{w} - \mathbf{y}||^2$$
$$l(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^n \log\left(1 + \exp(-y_i \mathbf{x}_i^T \mathbf{w})\right)$$
$$l(\mathbf{w}) = \frac{1}{2n} \sum_{i=1}^n \max\left(0, 1 - y_i \mathbf{x}_i^T \mathbf{w}\right)^2$$

Non-convex Regularizer

Convergence Analysis

Theorem 1: Let the assumptions A1-A3 hold and the monotone/Non-monotone line search criterion in be satisfied. Then all limit points of the sequence $\{w^{(k)}\}$ generated by GIST are critical points.

Theorem 2: Let the assumptions A1-A4 hold and the monotone/non-monotone line search criterion be satisfied. Then the sequence $\{w^{(k)}\}$ generated by GIST has **at least one limit point**.

 $A4: f(\mathbf{w}) \to +\infty$ when $\|\mathbf{w}\| \to +\infty$

Evaluation: Convergence

MICHIGAN STATE UNIVERSITY

Evaluation: Recovery Performance

MICHIGAN STATE UNIVERSITY

Software: GIST

GIST: A Non-Convex Sparse Learning Package

- Loss functions:
 - The least squares loss
 - The logistic loss
 - The squared hinge loss (L2 SVM loss)
- Non-convex Regularizers:
 - LSP
 - SCAD
 - MCP
 - Capped L1

Proximal Alternating Linearized Minimization (PALM) [Bolte et. al. 2013] Let $\mathbf{w} = (\mathbf{u}, \mathbf{v}), l(\mathbf{w}) = l(\mathbf{u}, \mathbf{v}), r(\mathbf{w}) = r_1(\mathbf{u}) + r_2(\mathbf{v})$ $\min_{\mathbf{w}} \{l(\mathbf{w}) + r(\mathbf{w})\} \Leftrightarrow \min_{\mathbf{u}, \mathbf{v}} \{f(\mathbf{u}, \mathbf{v}) = l(\mathbf{u}, \mathbf{v}) + r_1(\mathbf{u}) + r_2(\mathbf{v})\}$ • Fix $\mathbf{u} = \mathbf{u}^k$ and conduct a proximal gradient descent with respect to \mathbf{v} :

$$\begin{aligned} \mathbf{v}^{k+1} &= \operatorname*{arg\,min}_{\mathbf{v}} \left\{ l(\mathbf{u}^{k}, \mathbf{v}^{k}) + \nabla_{\mathbf{v}} l(\mathbf{u}^{k}, \mathbf{v}^{k})^{T}(\mathbf{v} - \mathbf{v}^{k}) + \frac{1}{2\alpha_{k}} \|\mathbf{v} - \mathbf{v}^{k}\|^{2} + r_{2}(\mathbf{v}) \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{v}} \left\{ \frac{1}{2} \left\| \mathbf{v} - (\mathbf{v}^{k} - \alpha_{k} \nabla_{\mathbf{v}} l(\mathbf{u}^{k}, \mathbf{v}^{k})) \right\|^{2} + \alpha_{k} r_{2}(\mathbf{v}) \right\} \\ &= \operatorname{Prox}_{\alpha_{k}}^{r_{2}} \left(\mathbf{v}^{k} - \alpha_{k} \nabla_{\mathbf{v}} l(\mathbf{u}^{k}, \mathbf{v}^{k}) \right). \end{aligned}$$

• Fix $\mathbf{v} = \mathbf{v}^{k+1}$ and conduct a proximal gradient descent with respect to \mathbf{u} :

68

$$\begin{split} \mathbf{u}^{k+1} &= \operatorname*{arg\,min}_{\mathbf{u}} \left\{ l(\mathbf{u}^k, \mathbf{v}^{k+1}) + \nabla_{\mathbf{u}} l(\mathbf{u}^k, \mathbf{v}^{k+1})^T (\mathbf{u} - \mathbf{u}^k) + \frac{1}{2\beta_k} \|\mathbf{u} - \mathbf{u}^k\|^2 + r_1(\mathbf{u}) \right\} \\ &= \operatorname*{arg\,min}_{\mathbf{u}} \left\{ \frac{1}{2} \left\| \mathbf{u} - (\mathbf{u}^k - \beta_k \nabla_{\mathbf{u}} l(\mathbf{u}^k, \mathbf{v}^{k+1})) \right\|^2 + \beta_k r_1(\mathbf{u}) \right\} \\ &= \operatorname{Prox}_{\beta_k}^{r_1} \left(\mathbf{u}^k - \beta_k \nabla_{\mathbf{u}} l(\mathbf{u}^k, \mathbf{v}^{k+1}) \right). \end{split}$$

Quasi-Newton Method [Rakotomamonjy et. al. 2015]

$$\min_{\mathbf{w}\in\mathbb{R}^{n}} \left\{ f(\mathbf{w}) = l(\mathbf{w}) + r(\mathbf{w}) \right\}$$
$$l(\mathbf{w}) = \hat{l}(\mathbf{w}) - \tilde{l}(\mathbf{w}) \text{ and } r(\mathbf{w}) = \hat{r}(\mathbf{w}) - \tilde{r}(\mathbf{w})$$
$$\hat{l}(\mathbf{w}), \tilde{l}(\mathbf{w}), \hat{r}(\mathbf{w}), \tilde{r}(\mathbf{w}) \text{ are convex functions } (\hat{l}(\mathbf{w}) \text{ and } \tilde{l}(\mathbf{w}) \text{ are differentiable but } \hat{r}(\mathbf{w}) \text{ and } \tilde{r}(\mathbf{w}) \text{ are typically not)}$$

Approximate $\hat{l}(\mathbf{w})$ using the second-order information and approximate $\tilde{l}(\mathbf{w}), \hat{r}(\mathbf{w}), \tilde{r}(\mathbf{w})$ using the first-order information

Quasi-Newton Method [Rakotomamonjy et. al. 2015]

• Compute the descent direction:

$$\begin{split} \Delta \mathbf{w}^k &= \operatorname*{arg\,min}_{\Delta \mathbf{w} \in \mathbb{R}^d} \left\{ \hat{l}(\mathbf{w}^k) + \nabla \hat{l}(\mathbf{w}^k)^T \Delta \mathbf{w} + \frac{1}{2} \Delta \mathbf{w}^T H^k \Delta \mathbf{w} - \tilde{l}(\mathbf{w}^k) - \nabla \tilde{l}(\mathbf{w}^k)^T \Delta \mathbf{w} \\ &+ \hat{r}(\mathbf{w}) - \tilde{r}(\mathbf{w}^k) - \tilde{\mathbf{g}}_r(\mathbf{w}^k)^T \Delta \mathbf{w} \right\}, \end{split}$$

where $\tilde{\mathbf{g}}_r(\mathbf{w}^k)$ is a sub-gradient of $\tilde{r}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}^k$ and H^k is the (approximated) Hessian of $\hat{l}(\mathbf{w})$ at $\mathbf{w} = \mathbf{w}^k$.

• Iterate along the descent direction:

$$\mathbf{w}^{k+1} = \mathbf{w}^k + \alpha_k \Delta \mathbf{w}^k.$$

The cost of solving the regularized QP sub-problem is high!
 Avoid solving the QP sub-problem at each iteration (HONOR, 2015).

HONOR: Hybrid Optimization for Non-convex Regularized problems [Gong and Ye, NIPS 2015]

$$\min_{\mathbf{w}\in\mathbb{R}^n}\left\{f(\mathbf{w})=l(\mathbf{w})+r(\mathbf{w})\right\}$$

A1: $l(\mathbf{w})$ is coercive, continuously differentiable and $\nabla l(\mathbf{w})$ is Lipschitz continuous with constant *L*. Moreover, $l(\mathbf{w}) > -\infty, \forall \mathbf{w} \in \mathbb{R}^n$.

A2: $r(\mathbf{w}) = \sum_{i=1}^{n} \rho(|w_i|)$, where $\rho(t)$ is non-decreasing, continuously differentiable and concave with respect to t in $[0,\infty)$; $\rho(0) = 0$ and $\rho'(0) \neq 0$ with $\rho'(t) = \partial \rho(t) / \partial t$ denoting the derivative of $\rho(t)$ at the point t.

Examples: Non-convex Regularizers

$$\min_{\mathbf{w}\in\mathbb{R}^{n}} \left\{ f(\mathbf{w}) = l(\mathbf{w}) + r(\mathbf{w}) \right\}$$

LSP: $\rho(|w_{i}|) = \lambda \log(1 + |w_{i}|/\theta)$
SCAD: $\rho(|w_{i}|) = \begin{cases} \lambda |w_{i}|, & \text{if } |w_{i}| \leq \lambda, \\ \frac{-w_{i}^{2} + 2\theta\lambda |w_{i}| - \lambda^{2}}{2(\theta - 1)}, & \text{if } \lambda < |w_{i}| \leq \theta\lambda, \\ (\theta + 1)\lambda^{2}/2, & \text{if } |w_{i}| > \theta\lambda. \end{cases}$
MCP: $\rho(|w_{i}|) = \begin{cases} \lambda |w_{i}| - w_{i}^{2}/(2\theta), & \text{if } |w_{i}| \leq \theta\lambda, \\ \theta\lambda^{2}/2, & \text{if } |w_{i}| > \theta\lambda. \end{cases}$

MICHIGAN STATE UNIVERSITY
Mining Second-Order Information

 Obtain a direction using second-order information $\mathbf{d}^{k} = \underset{\mathbf{d} \in \mathbb{R}^{n}}{\operatorname{arg\,min}} \left\{ f(\mathbf{w}^{k}) + \left\langle f(\mathbf{w}^{k})^{T} \mathbf{d} + \frac{1}{2} \mathbf{d}^{T} B^{k} \mathbf{d} \right\} = -H^{k} \left\langle f(\mathbf{w}^{k}) \right.$ $H^{k} = (B^{k})^{-1}, \quad \left\langle i f(\mathbf{w}) = \left\{ \begin{array}{l} \nabla_{i} l(\mathbf{w}) + \rho'(|w_{i}|), & \text{if } w_{i} > 0, \\ \nabla_{i} l(\mathbf{w}) - \rho'(|w_{i}|), & \text{if } w_{i} < 0, \\ \nabla_{i} l(\mathbf{w}) - \rho'(|w_{i}|), & \text{if } w_{i} < 0, \\ \nabla_{i} l(\mathbf{w}) + \rho'(0), & \text{if } w_{i} = 0, \nabla_{i} l(\mathbf{w}) + \rho'(0) < 0, \\ \nabla_{i} l(\mathbf{w}) - \rho'(0), & \text{if } w_{i} = 0, \nabla_{i} l(\mathbf{w}) - \rho'(0) > 0, \\ 0, & \text{otherwise.} \end{array} \right.$ otherwise.

 $\mathbf{p}^{k} = \pi(\mathbf{d}^{k}; \mathbf{v}^{k}), \text{ where } \mathbf{v}^{k} = -\Diamond f(\mathbf{w}^{k})$

: projection operation that keeps y and x in the same orthant

HONOR: Hybrid Strategy

Hybrid Strategy: QN-step or GD-step

 $\mathcal{I}^{k} = \{i \in \{1, \dots, n\} : 0 < |w_{i}^{k}| \leq \min(||\mathbf{v}^{k}||, \epsilon), w_{i}^{k}v_{i}^{k} < 0\}$ Empty Nonempty

• **QN-step:** $\mathbf{w}^k(\alpha) = \pi(\mathbf{w}^k + \alpha \mathbf{p}^k; \mathbf{w}^k)$

QN-step GD-step

Line search (QN): $f(\mathbf{w}^k(\alpha)) \leq f(\mathbf{w}^k) - \gamma \alpha (\mathbf{v}^k)^T \mathbf{d}^k$

• **GD-step:**
$$\mathbf{w}^{k}(\alpha) \leftarrow \operatorname{arg\,min}_{\mathbf{x}} \left\{ \nabla l(\mathbf{w}^{k})^{T}(\mathbf{w} - \mathbf{w}^{k}) + \frac{1}{2\alpha} \| \mathbf{w} - \mathbf{w}^{k} \|^{2} + \lambda \| \mathbf{w} \|_{1} \right\}$$

Line search (GD): $f(\mathbf{w}^k(\alpha)) \le f(\mathbf{w}^k) - \frac{\gamma}{2\alpha} \|\mathbf{w}^k(\alpha) - \mathbf{w}^k\|^2$

Why Hybrid Strategy

- The optimization problem is non-smooth
- The operation of projection a vector back to the previous orthant is not easy to handle
- The key difficulty: if there exists a subsequence κ such that $\{x_i^k\}_{\kappa}$ converges to zero, it is possible that for a large enough $k \in \mathcal{K}, |x_i^k|$ is arbitrarily small but is never equal to zero.

Experiments (LSP)

Experiments (MCP)

Experiments (SCAD)

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Matrix Completion

Image Recovery

Recover the original image with partial observation

Collaborative Filtering

	Items									
		?	?	?	?	?		?	?	?
Customers	?	?		?		?	?	?	?	?
	?	?	?	?	?	?	?	?		?
	?	?	?		?	?	?	?	?	?
		?	?	?	?		?	?	?	
	?		?	?	?	?	?	?		?
	?	?	?	?	?		?	?	?	?
	?	?	?		?	?	?	?		?

- Customers are asked to rank items
- Not all customers ranked all items
- Predict the missing rankings (98.9% is missing)

The Netflix Problem

- About a million users and 25,000 movies
- Known ratings are sparsely distributed

Preferences of users are determined by a small number of factors \rightarrow low rank

Matrix Rank

- The number of independent rows or columns
- The singular value decomposition (SVD):

Low Rank Matrix Completion

 Low rank matrix completion with incomplete observations can be formulated as:

> $\min_{\mathbf{X}} \quad rank(\mathbf{X})$ s.t. $P_{\Omega}(\mathbf{X}) = P_{\Omega}(\mathbf{Y})$

with the projection operator defined as: $P_{\Omega}(X) = \begin{cases} x_{ij} & (i,j) \in \Omega \\ 0 & (i,j) \notin \Omega \end{cases}$

Other Low-Rank Problems

- Multi-Task/Class Learning
- Image compression
- Foreground-background separation problem in computer vision
- Low rank metric learning in machine learning
- Other settings:
 - System identification in control theory
 - low-degree statistical model for a random process
 - a low-order realization of a linear system
 - a low-order controller for a plant
 - a low-dimensional embedding of data in Euclidean space

Two Formulations for Rank Minimization

min loss(X) +
$$\lambda$$
*rank(X)
loss(X) = $\frac{1}{2} \|P_{\Omega}(X) - P_{\Omega}(Y)\|_{F}^{2}$ min rank(X)
subject to loss(X) ≤

3

Rank minimization is NP-hard

Trace Norm (Nuclear Norm)

Trace norm of a matrix is the sum of its singular values:

$$X = U \begin{pmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & \cdots & \sigma_k \end{pmatrix} V^T$$
$$X \parallel_* = \sum_{i=1}^k \sigma_i$$

- trace norm ⇔ 1-norm of the vector of singular values
- trace norm is the convex envelope of the rank function over the unit ball of spectral norm ⇒ a convex relaxation

Two Convex Formulations

min loss(X) +
$$\lambda \times ||X||_{\star}$$

Trace norm minimization is **convex**

- Can be solved by semi-definite programming
 - Computationally expensive
- Recent more efficient solvers:
 - Singular value thresholding (Cai et al, 2008)
 - Fixed point method (Ma et al, 2009)
 - Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)

Trace Norm Minimization

Trace norm convex relaxation

$$\min_{\mathbf{X}} \qquad \|\mathbf{X}\|_{*} \qquad \text{noisy case} \qquad \min_{\mathbf{X}} \quad \frac{1}{2} \|P_{\Omega}(\mathbf{X}) - P_{\Omega}(\mathbf{Y})\|_{F}^{2} + \lambda \|\mathbf{X}\|_{*}$$

Can be solved by

- sub-gradient method
- the proximal gradient method
- the conditional gradient method

Convergence speed: sub-linear

Iteration: truncated SVD or top-SVD (Frank-Wolfe)

Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.

Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

min $f(x) = loss(x) + \lambda \times penalty(x)$

Proximal Operator Associated with Trace Norm

Optimization problem

$$\min_{X} f(X) = \log(X) + \lambda \|X\|_{*}$$

Associated proximal operator $X^* = \pi_{tr}(V) = \arg \min_X \frac{1}{2} ||X - V||_2^2 + \lambda \times ||X||_*$

Closed form solution: $X^* = P \operatorname{diag}(\tilde{\sigma}) Q^{\mathrm{T}},$

where $V = P \operatorname{diag}(\sigma_1, \sigma_2, \dots, \sigma_k) Q^{\mathrm{T}}$ is the SVD of $V \in \mathbb{R}^{m \times n}$, $k = \min(m, n), P \in \mathbb{R}^{m \times k}, Q \in \mathbb{R}^{n \times k}$, and

$$\tilde{\sigma}_i = \begin{cases} v_i - \lambda & \sigma_i > \lambda \\ 0 & \sigma_i \le \lambda \end{cases}$$

A Non-convex Formulation via Matrix Factorization

 Rank-r matrix X can be written as a product of two smaller matrices U and V

 $\mathbf{X} = \mathbf{U}\mathbf{V}^T$

Alternating Optimization

$$\min_{\mathbf{U},\mathbf{V}} \quad \left\| P_{\Omega}(\mathbf{U}\mathbf{V}^{T}) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2} + \frac{1}{2} \left(\left\| \mathbf{U} \right\|_{F}^{2} + \left\| \mathbf{V} \right\|_{F}^{2} \right)$$

Non-convex

- Can be solved via
 - Alternating minimization (Jain et al, 2012)

Theoretical Result

$$\min_{\mathbf{U}\in R^{m\times k},\mathbf{V}\in R^{n\times k}} \left\| P_{\Omega}(\mathbf{U}\mathbf{V}^{T}) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2}$$

$$V_{t+1} = \underset{V \in \mathbb{R}^{n \times k}}{\operatorname{argmin}} \left\| P_{\Omega_{t+1}} (\mathbf{U}_t \mathbf{V}^T - \mathbf{Y}) \right\|_F^2$$
$$U_{t+1} = \underset{U \in \mathbb{R}^{m \times k}}{\operatorname{argmin}} \left\| P_{\Omega_{T+t+1}} (\mathbf{U} \mathbf{V}_{t+1}^T - \mathbf{Y}) \right\|_F^2$$

 Under certain condition with proper initialization, alternating optimization algorithm guarantee geometric convergence.

Practical Algorithm

$$\min_{\mathbf{U},\mathbf{V},\mathbf{Z}} \qquad \left\| \mathbf{U}\mathbf{V}^{T} - \mathbf{Z} \right\|_{F}^{2}$$

s.t.
$$P_{\Omega}(\mathbf{Z}) = P_{\Omega}(\mathbf{Y})$$

$$L = \left\| \mathbf{U}\mathbf{V}^T - \mathbf{Z} \right\|_F^2 - \mathbf{\Lambda} \bullet P_{\Omega}(\mathbf{Z} - \mathbf{Y})$$

- The Lagrangian function can be solved by alternating optimization method.
- Weak convergence guarantee

Robust Matrix Completion

$$\min_{U,V,Z} \|P_{\Omega}(Z-Y)\|_{1}$$

s.t. $UV^{T}-Z$

$$L = \left\| P_{\Omega}(\mathbf{Z} - \mathbf{Y}) \right\|_{1} + \left\langle \Lambda, \mathbf{U}\mathbf{V}^{T} - \mathbf{Z} \right\rangle + \frac{\beta}{2} \left\| \mathbf{U}\mathbf{V}^{T} - \mathbf{Z} \right\|_{F}^{2}$$

- The robust matrix completion problem can be solved by augmented Lagrangian alternating direction method.
- Weak convergence guarantee

Summary of Two Approaches

Trace norm convex relaxation

$$\begin{array}{lll}
\min_{X} & \|X\|_{*} & \text{noisy case} \\
s.t. & P_{\Omega}(X) = P_{\Omega}(Y) & & & \\
\end{array} & \min_{X} & \|P_{\Omega}(X) - P_{\Omega}(Y)\|_{F}^{2} + \lambda \|X\|_{*} \\
\end{array}$$
Projection operator: $P_{\Omega}(X) = \begin{cases} x_{ij} & (i,j) \in \Omega \\ 0 & (i,j) \notin \Omega \end{cases}$

• Bilinear non-convex relaxation

$$\min_{\mathbf{U},\mathbf{V}} \quad \left\| P_{\Omega}(\mathbf{U}\,\mathbf{V}^{T}) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2}$$

$$n \boxed{\begin{array}{c} m \\ m \\ r \end{array}} n \boxed{\begin{array}{c} m \\ r \end{array}} n \boxed{\begin{array}{c} m \\ r \end{array}}$$

 $\mathbf{X} = \mathbf{U}\mathbf{V}^T$

Rank-One Matrix Space

Rank-one matrices with unit norm as Atoms

$$\mathbf{M} \in \mathfrak{R}^{n \times m}$$
 for $\mathbf{M} = uv^T$ $u \in \mathfrak{R}^n$ $v \in \mathfrak{R}^m$

Matrix Completion in Rank-One Matrix Space

• Matrix completion in rank-one matrix space

 $\min_{\boldsymbol{\theta} \in \mathfrak{R}^{I}, \{M_{i}\}} \qquad \left\|\boldsymbol{\theta}\right\|_{0}$ s.t. $P_{\Omega}(\mathbf{X}(\boldsymbol{\theta})) = P_{\Omega}(\mathbf{Y})$

with the estimated matrix in the rank-one matrix space as $X(\theta) = \sum \theta_i M_i$

• Reformulation in the noisy case

$$\min_{\mathbf{X}(\boldsymbol{\theta})} \qquad \left\| P_{\Omega}(\mathbf{X}(\boldsymbol{\theta})) - P_{\Omega}(\mathbf{Y}) \right\|_{F}^{2}$$

s.t.
$$\left\| \boldsymbol{\theta} \right\|_{0} \leq r$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices $M \in \Re^{n \times m}$

Vector Case: Compressive Sensing

• When data is sparse/compressible, can directly acquire a condensed representation $y = \Phi x$

Convex Formulation for Recovery

Signal recovery via loptimization

[Candes, Romberg, Tao; Donoho]

$$\widehat{x} = \arg\min_{y = \Phi x} \|x\|_1$$

Greedy Algorithms

Signal recovery via iterative greedy algorithms

- orthogonal) matching pursuit [Gilbert, Tropp]
- iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, Defrise, De Mol; Blumensath, Davies; ...]
- CoSaMP [Needell and Tropp]

Greedy Recovery Algorithm (1)

Consider the following problem

- 1-Sparse (only one support)
- K-Sparse

Greedy Recovery Algorithm (2)

- If $\Phi = [\phi_1, \phi_2, \dots, \phi_N]$ then $\arg \max |\langle \phi_i, y \rangle|$ gives the support of x
- How to extend to *K*-sparse signals?

Greedy Recovery Algorithm (3)

Find atom:

Add atom to support:

Signal estimate

 $r = y - \Phi \hat{x}_{k-1}$ $k = \arg \max |\langle \phi_i, r \rangle|$ $S = S \bigcup \{k\}$ $x_k = (\Phi_S)^{\dagger} y$

Orthogonal Matching Pursuit

goal: given $y = \Phi x$, recover a sparse xcolumns of Φ are unit-norm

initialize: $\hat{x}_0 = 0, r = y, \Lambda = \{\}, i = 0$

iteration:

 $\circ i = i + 1$

• $b = \Phi^T r$ • $k = \arg \max\{|b(1)|, |b(2)|, \dots, |b(N)|\}$ Find atom with largest support

$$\circ \Lambda = \Lambda \bigcup k \circ (\widehat{x}_i)_{|\Lambda} = (\Phi_{|\Lambda})^{\dagger} y, \ (\widehat{x}_i)_{|\Lambda^c} = 0$$

 $\circ r = y - \Phi \hat{x}_i$

Update signal estimate

Update residual

Orthogonal Rank-One Matrix Pursuit for Matrix Completion

• Matrix completion in rank-one matrix space

$$\min_{X(\theta)} \|P_{\Omega}(X(\theta)) - P_{\Omega}(Y)\|_{F}^{2}$$

s.t.
$$\|\theta\|_{0} \leq r$$
$$X(\theta) = \sum_{i \in I} \theta_{i} M_{i}$$

We solve this problem using an orthogonal matching pursuit type greedy algorithm. The candidate set is an infinite set composed by all rank-one matrices.
Rank-One Matrix Basis

Step 1: basis construction

$$[u_*, v_*] = \underset{\|u\|=1, \|v\|=1}{\operatorname{argmax}} \langle \mathbf{R}, uv^T \rangle = u^T \mathbf{R} v \qquad \text{with residual matrix} \\ \mathbf{R} = \mathbf{Y}_{\Omega} - \mathbf{X}_{\Omega}$$

 $M = u_* v_*^T$ is selected from all rank-one matrices with unit norm.

Rank-One Matrix Pursuit Algorithm

Step 1: construct the optimal rank-one matrix basis

$$[u_*, v_*] = \underset{u, v}{\operatorname{argmax}} \left\langle (\mathbf{Y} - \mathbf{X}_k)_{\Omega}, uv^T \right\rangle \qquad \mathbf{M}_{k+1} = u_* v_*^T$$

This is the top singular vector pair, which can be solved efficiently by power method. This generalizes OMP with *infinite* dictionary set of all rank-one matrices $M \in \Re^{n \times m}$

Step 2: calculate the optimal weights for current bases $\theta^{k} = \underset{\theta \in \Re^{k}}{\operatorname{arg\,min}} \left\| \sum_{i} \theta_{i} \operatorname{M}_{i} - \operatorname{Y} \right\|_{\Omega}^{2}$

This is a least squares problem, which can be solved incrementally.

Linear Convergence

□ Linear upper bound for the algorithm to converge

Theorem 3.1. The rank-one matrix pursuit algorithm satisfies $||\mathbf{R}_k|| \leq \gamma^{k-1} ||\mathbf{Y}||_{\Omega}, \quad \forall k \geq 1.$ γ is a constant in [0, 1).

This is significantly different from the standard MP/OMP algorithm with a finite dictionary, which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends on the top singular vector pair pursuit step.

Z. Wang et al. ICML'14; SIAM J. Scientific Computing 2015

Efficiency and Scalability

 An efficient and scalable algorithm for matrix completion: Rank-One Matrix Pursuit

- Scalability: top-SVD
- Convergence: linear convergence

Z. Wang et al. ICML'14; SIAM J. Scientific Computing 2015

Related Work

Atomic decomposition $X = \sum_{i \in I} \theta_i M_i$

can be solved by matching pursuit type algorithms.

□ Vs. Frank-Wolfe algorithm (FW)

Similarity: top-SVD

Difference: linear convergence Vs. sub-linear convergence

□ Vs. existing greedy approach (ADMiRA)

Similarity: linear convergence

Difference: 1. top-SVD Vs. truncated SVD 2. no extra condition for linear convergence

Ref: Lee, K. and Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402–4416, 2010.

Time and Storage Complexity

• Time complexity

	R1MP	ADMiRA & AltMin	FW	Proximal	SVT
Each Iter.	Ο(Ω)	$O(r \Omega)$	Ο(Ω)	$O(r \Omega)$	$O(r \Omega)$
Iterations	$O(\log(1/\epsilon))$	$O(\log(1/\epsilon))$	Ο(1/ε)	Ο(1/√ε)	Ο(1/ε)
Total	$O(\Omega log(1/\epsilon))$	$O(r \Omega log(1/\epsilon))$	$O(\Omega /\epsilon)$	$O(r \Omega /\sqrt{\epsilon})$	$O(r \Omega /\epsilon)$

minimum iteration cost

+ linear convergence

Storage complexity

Economic Rank-One Matrix Pursuit

• Step 1: find the optimal rank-one matrix basis

$$[u_*, v_*] = \underset{u,v}{\operatorname{argmax}} \left\langle (\mathbf{Y} - \mathbf{X}_k)_{\Omega}, uv^T \right\rangle \qquad \mathbf{M}_{k+1} = u_* v_*^T$$

• Step 2: calculate the weights for two matrices

$$\boldsymbol{\alpha} = \underset{\boldsymbol{\alpha} \in \Re^2}{\operatorname{arg\,min}} \| \boldsymbol{\alpha}_1 \mathbf{X}_k + \boldsymbol{\alpha}_2 \mathbf{M}_{k+1} - \mathbf{Y} \|_{\Omega}^2$$
$$\boldsymbol{\theta}_i^{k-1} = \boldsymbol{\theta}_i^{k-1} \boldsymbol{\alpha}_1 \quad \boldsymbol{\theta}_i^k = \boldsymbol{\alpha}_2$$

• It retains the linear convergence

Theorem 4.1. The economic rank-one matrix pursuit algorithm satisfies

$$\|\mathbf{R}_k\| \leq \tilde{\gamma}^{k-1} \|\mathbf{Y}\|_{\Omega}, \quad \forall k \geq 1.$$

 $\tilde{\gamma}$ is a constant in [0, 1).

Convergence

Residual curves of the Lena image for R1MP and ER1MP in log-scale

Experiments

Experiments

- Collaborative filtering
- Image recovery
- Convergence property

Competing algorithms

- singular value projection (SVP)
- spectral regularization algorithm (SoftImpute)
- low rank matrix fitting (LMaFit)
- alternating minimization (AltMin)
- boosting type accelerated matrix-norm penalized solver (Boost)
- Jaggi's fast algorithm for trace norm constraint (JS)
- greedy efficient component optimization (GECO)
- Rank-one matrix pursuit (R1MP)
- Economic rank-one matrix pursuit (ER1MP)

MICHIGAN STATE UNIVERSITY

trace norm minimization

alternating optimization

atomic decomposition

Collaborative Filtering

Running time for different algorithms

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	18.35	161.49	3.68	11.14	93.91	29.68	$> 10^4$	1.83	0.99
Jester2	16.85	152.96	2.42	10.47	261.70	28.52	$> 10^4$	1.68	0.91
Jester3	16.58	10.55	8.45	12.23	245.79	12.94	$> 10^{3}$	0.93	0.34
MovieLens100K	1.32	128.07	2.76	3.23	2.87	2.86	10.83	0.04	0.04
MovieLens1M	18.90	59.56	30.55	68.77	93.91	13.10	$> 10^4$	0.87	0.54
MovieLens10M	$> 10^{3}$	$> 10^{3}$	154.38	310.82	_	130.13	$> 10^5$	23.05	13.79

Prediction accuracy in terms of RMSE

Dataset	SVP	SoftImpute	LMaFit	AltMin	Boost	JS	GECO	R1MP	ER1MP
Jester1	4.7311	5.1113	4.7623	4.8572	5.1746	4.4713	4.3680	4.3418	4.3384
Jester2	4.7608	5.1646	4.7500	4.8616	5.2319	4.5102	4.3967	4.3649	4.3546
Jester3	8.6958	5.4348	9.4275	9.7482	5.3982	4.6866	5.1790	4.9783	5.0145
MovieLens100K	0.9683	1.0354	1.2308	1.0042	1.1244	1.0146	1.0243	1.0168	1.0261
MovieLens1M	0.9085	0.8989	0.9232	0.9382	1.0850	1.0439	0.9290	0.9595	0.9462
MovieLens10M	0.8611	0.8534	0.8625	0.9007	_	0.8728	0.8668	0.8621	0.8692

Summary

- Matrix completion background
- Trace norm convex formulation
- Matrix factorization: non-convex formulation
- Orthogonal rank-one matrix pursuit
 - Efficient update: top SVD
 - Fact convergence rate: linear

Road Map

- Introduction to Sparsity
- Convex Approaches
- Non-Convex Approaches
- Topic: Matrix Completion
- Topic: Multi-task Learning

Road Map

- Part I: Multi-Task Learning (MTL) Background and motivation
- Part II: Overview of MTL Models
- Part III: Application of MTL on disease progression
- **Part IV**: MTL Software Package (MALSAR)

Multiple Tasks

Examination Scores Prediction¹

31256

School 1 - Alverno High School

72%

school-dependent

•••

...

87

student-dependent

School 138 - Jefferson Intermediate School

1986

¹The Inner London Education Authority (ILEA)

Learning Multiple Tasks

Leaning multiple tasks simultaneously

Performance of MTL

- Evaluation on the School data:
 - Predict exam scores for 15362 students from 139 schools
 - Describe each student by 27 attributes
 - Multi-task learning performs significantly better than other single task learning approaches.

More Applications of Multi-Task Learning

HIV Therapy Screening [Bickel, ICML'08] Collaborative ordinal regression

Disease progression modeling [Zhou et. al. KDD'11, 12]

Web image and video search [Wang et. al. CVPR'09]

Disease prediction [Zhang et. al. Neurolmage 12]

Protein classification [Charuvaka et. al. ICDM'12]

Traditional Machine Learning

- Elements of machine learning on single task
 - The problem (task/domain)
 - Training data
 - Learning algorithms
 - Trained model
 - Applying model on unseen data (generalization)

Transfer Learning

Multi-Task Learning

The Multi-Blah Family

- Multi-Task Learning
 - A set of related machine learning tasks
 - Different samples, (usually) same features for each task
- Multi-View Learning
 - A learning task involving a set of different views of the same set of objects (e.g., text and image descriptions)
 - Same samples, different features for each view
- Multi-Label Learning
 - A learning task where the prediction for each sample includes multiple labels (e.g., news categories)
 - Can be considered as multi-task with the same data matrices
- Multi-Class Learning
 - A classification task where the label can be multiple values (e.g., weather prediction)
 - Can be considered as multi-label with mutual exclusive labels.

Overview of MTL Models

Achieve Multi-Task Learning

- Shared Hidden Nodes in Neural Network
- Shared Parameter Gaussian Process
- Multi-Task Regularization
 - Can be designed to incorporate various assumptions
 and domain knowledge
 - Can be trained using large-scale optimization algorithms on big data
 - The key is to design the regularization term that couples the tasks.

Representative Regularized MTL

- Mean-Regularized MTL
- MTL with High-Dimensional Features
 - Embedded Feature Selection
 - Low-Rank Subspace Learning
- Clustered MTL

Notation

Task **m** Dimension d Task **m** Task **m** Sample **n**2 Sample **n**₂ Sample **n**t Sample **n** : : Learning Sample **n**1 Sample **n**1 Feature Matrices X_i Target Vectors Y_i Model Matrix W

Dimension d

• We focus on linear models:

Mean-Regularized Multi-Task Learning

Evgeniou & Pontil, 2004 KDD

- Assumption: task parameter vectors of all tasks are close to each other.
 - Advantage: simple, intuitive, easy to implement
 - Disadvantage: may not hold in real applications.

Regularization

penalizes the deviation of each task from the mean

$$\min_{W} \frac{1}{2} \|XW - Y\|_{F}^{2} + \lambda \sum_{i=1}^{m} \left\| W_{i} - \frac{1}{m} \sum_{s=1}^{m} W_{s} \right\|_{2}^{2}$$

Multi-Task Learning with Joint Feature Learning

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

- Using group sparsity: ℓ_1/ℓ_q -norm regularization
- When q>1 we have group sparsity.

Regularization sparsity

Writer-Specific Character Recognition

Obozinski, Taskar, and Jordan, 2006

• Each task is a classification between two letters for one writer.

	pixels: error (%)								
Task	ℓ_1/ℓ_2	ℓ_1/ℓ_1	$\mathrm{id}.\ell_1$	pool					
c/e	4.0	8.5	9.0	4.5					
g/y	11.4	16.1	17.2	18.6					
g/s	4.4	10.0	10.3	6.9					
m/n	2.5	6.3	6.9	4.1					
a/g	1.3	3.6	4.1	3.6					
i/j	12.0	14.0	14.0	11.3					
a/o	2.8	4.8	5.2	4.2					
f/t	5.0	6.7	6.1	8.2					
h/n	3.2	14.3	18.6	5.0					

Dirty Model for Multi-Task Learning

Jalali et. al. 2010 NIPS

• In practical applications, it is too restrictive to constrain all tasks to share a single shared structure.

Robust Multi-Task Learning

Most Existing MTL
 Robust MTL Approaches

Robust Multi-Task Feature Learning

Gong et. al. 2012 KDD

Simultaneously captures a common set of features among relevant tasks and identifies outlier tasks.

Low-Rank Structure for MTL

Capture task relatedness via a shared low-rank structure

Low-Rank Structure for MTL (Cont.)

- Rank minimization formulation
 - $\min_{W} \text{Loss}(W) + \lambda \times \text{Rank}(W)$
- Rank minimization is *NP-Hard* for general loss functions thus we use convex relaxation: trace norm minimization
 - $\min_{W} \text{Loss}(W) + \lambda \times ||W||_*$

Regularization

Encourages low-rank on the model matrix

Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL

• ASO assumes that the model is the sum of two components: a task specific one and a shared low dimensional subspace.

Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL

subject to
Incoherent Low-Rank and Sparse Structures

Chen et. al. 2010 KDD

• ASO uses L2-norm on task-specific component, we can also use L1-norm to learn task-specific features.

Robust Low-Rank in MTL

Chen et. al. 2011 KDD

• Simultaneously perform low-rank MTL and identify outlier tasks.

Summary

- All multi-task learning formulations discussed above can fit into the **W=P+Q** schema.
 - Component P: shared structure
 - Component Q: information not captured by the shared structure

Embedded Feature Selection	Shared Structure P	Component Q
L1/Lq	Feature Selection (L1/Lq Norm)	0
Dirty	Feature Selection (L1/Lq Norm)	L1-norm
rMTFL	Feature Selection (L1/Lq Norm)	Outlier (column-wise L1/Lq Norm)
Low-Rank Subspace Learning		
Trace Norm	Low-Rank (Trace Norm)	0
ISLR	Low-Rank (Trace Norm)	L1-norm
ASO	Low-Rank (Shared Subspace)	L2-norm on independent comp.
RMTL	Low-Rank (Trace Norm)	Outlier (column-wise L1/Lq Norm)

Multi-Task Learning with Clustered Structures

- Most MTL techniques assume all tasks are related
- Not true in many applications
- Clustered multi-task learning
 assumes
 - the tasks have a group structure
 - the models of tasks from the same group are closer to each other than those from a different group

Jacob et. al. 2008 NIPS, Zhou et. al. 2011 NIPS

• Use regularization to capture clustered structures.

Zhou et. al. 2011 NIPS

 Capture structures by minimizing sumof-square error (SSE) in K-means clustering:

 $\min_{F} \operatorname{tr}(W^{T}W) - \operatorname{tr}(F^{T}W^{T}WF)$

 $F: m \times k$ orthogonal cluster indicator matrix $F_{i,j} = 1/\sqrt{n_j}$ if $i \in I_j$ and 0 otherwise task number **m >** cluster number <mark>k</mark>

Zhou et. al. 2011 NIPS

 Directly minimizing SSE is hard because of the non-linear constraint on F:

$$\min_{F} \operatorname{tr}(W^{T}W) - \operatorname{tr}(F^{T}W^{T}WF)$$

 $F: m \times k$ orthogonal cluster indicator matrix $F_{i,j} = 1/\sqrt{n_j}$ if $i \in I_j$ and 0 otherwise

$$\min_{F:F^T F=I_k} \operatorname{tr}(W^T W) - \operatorname{tr}(F^T W^T W F)$$

Zha et. al. 2001 NIPS

task number **m >** cluster number **k**

Zhou et. al. 2011 NIPS

• Clustered multi-task learning (CMTL) formulation

- CMTL has been shown to be equivalent to another class of MTL called ASO
 - Given the dimension of the shared low-rank subspace in ASO and the cluster number in clustered multi-task learning (CMTL) are the same.

Convex Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS

Modeling Disease Progression via Multi-Task Learning

Multi-Task Learning Application

JULIANNE MOORE AWARD"

"JULIANNE MOORE GIVES A SENSITIVE, SHATTERING AND

STILL ALICE

JULIANNE MOORE ALEC BALDWIN KRISTEN STEWART A RUM BY RICHARD GLATZER AND WASH WESTMORELAND

Alzheimer's disease

Also called: senile dementia

<complex-block>

A progressive disease that destroys memory and other important mental functions.

Very common

More than 3 million US cases per year

- Requires a medical diagnosis
- Lab tests or imaging not required
- Chronic: can last for years or be lifelong

Consult a doctor for medical advice **Sources:** Mayo Clinic and others.

Background (cont.)

 NIH in 2003 funded the Alzheimer's Disease Neuroimaging Initiative (ADNI), facilitating a public available database for using neuroimaging data in predicting the progression of AD.

Disease Progression

- Clinical scores are used to evaluate the cognitive status
 - MMSE, ADAS-Cog and etc.
- Disease progression
 - Prediction of clinical scores from neuroimaging features
 - Build one regression model at each time point.

Disease Progression (cont.)

- Disease progression as machine learning tasks
 - Build one regression model at each time point.

Regression minimize: $L(W) = ||(XW - Y)||_F^2$

Model I: Temporal Group Lasso (TGL)

Model II: Fused Sparse Group Lasso (FSGL)

 λ_2

WImage: ConstructionLoss FunctionElement-wise SparsePerformsImproves generalizationregressionperformance

 $\min |L|$

Fused Sparse Group Lasso

Task (Time Point): t

Sparse Temporal Smoothness via Fused Lasso For each feature parameter, the change of values and sparse pattern of parameters is smooth over time

Group Sparse Models at different time points share the same set of features

Optimization Algorithm

- Objective is convex but non-smooth
 - Objective is smooth + non-smooth composite
 - Projected gradient/accelerated projected gradient
 - Key: proximal operator (Euclidean projection)

 $\pi(V) = \arg\min_{W} \frac{1}{2} \|W - V\|_{F}^{2} + \lambda_{1} \|W\|_{1} + \lambda_{2} \|RW^{T}\|_{1} + \lambda_{3} \|W\|_{2,1}$

Can be decomposed into two simpler problems and solved efficiently

Theorem 1. Define

$$\pi_{\rm FL}(\mathbf{v}) = \arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{v}\|_2^2 + \lambda_1 \|\mathbf{w}\|_1 + \lambda_2 \|R\mathbf{w}\|_1 \quad (5)$$

$$\pi_{\mathrm{GL}}(\mathbf{v}) = \arg\min_{\mathbf{w}} \frac{1}{2} \|\mathbf{w} - \mathbf{v}\|_{2}^{2} + \lambda_{3} \|\mathbf{w}\|_{2}.$$
 (6)

Then the following holds:

$$\pi(\mathbf{v}) = \pi_{\mathrm{GL}}(\pi_{\mathrm{FL}}(\mathbf{v})). \tag{7}$$

Performance

- Use baseline MRI feature to predict future MMSE score
- Average performance over 10 iterations

MMSE

Performance (cont.)

- Use baseline MRI feature to predict ADAS-Cog score
- Average performance over 10 iterations

ADAS-Cog

MALSAR: Multi-Task Learning via Structural Regularization
Multi-Task Learning Software

	MALSAR Multi-Task Learning via Structural Regularization		O O O O O O O O O O O O			
		Author	This repository Sear	ch	Explore Gist Blog Help	🚮 jia
nome socialitie incontrolige rapers		Audiois	🛄 jiayuzhou / MA	LSAR		Unwatch - 2
			Multi-task learning via	Structural Regularization — Edit		
Relate	d tasks? Learn to	gether.	11 commits	🐉 2 branches	⊗ 0 releases	1 contributor
MALSA	R: A multi-task machine learning	package	য়ে টি branch: master -	MALSAR / +		E
		273	Add mac binaries for calibr	ation		~
			jiayuzhou authored 24 d	lays ago		latest commit 5441c54ddd 💽
			MALSAR	Add mac binaries for calibration		24 days ago
			data	Fine but to version 1.1		4 months ago
* 1 *			examples	Fix a bug to use tr to build model.		a montin ago
			manual	Init Commit for Version 1.1		4 months ago
		-		Update gitignore.		3 months ago
Learning Formulations	Efficient Ontimization	Fully Customizable	.project	Init Commit for version 1.1		4 months ago
Learning Formulations	Encient Optimization	Fully Customizable		Init Commit for version 1.1		4 months ago
MALSAR includes many state-of-the-art multi-task learning formulation to start with. MALSAR uses first ordinates and is capable with.	MALSAR uses first order optimization solvers and is capable of solving large scale problems	irst order optimization Got novel formulations? Fork MALSAR on apable of solving large e problems. Got novel formulations? Fork MALSAR on Github and build your own branch now!	INSTALL.m	Adding Pacifier-IBA/SBA		3 months ago
				Initial commit		9 months ago
	scale problems.		README.md	Update README.md		3 months ago

- Firstly introduced my MTL tutorial at SDM in 2012
- Over 40 research works using MALSAR are published in KDD, NIPS, TPAMI, ICCV, ICDM, ICIP, COLING, MICCAI, ACM-MM, etc.
- Used as **course material** to analyze compound profiling in the *Strasbourg Summer School* in France
- A core component in the \$11mi NIH-BD2K grant

Some MTL Algorithms in MALSAR

- Mean-Regularized Multi-Task Learning
- MTL with Embedded Feature Selection
 - Joint Feature Learning
 - Dirty Multi-Task Learning
 - Robust Multi-Task Feature Learning
- MTL with Low-Rank Subspace Learning
 - Trace Norm Regularized Learning
 - Alternating Structure Optimization
 - Incoherent Sparse and Low Rank Learning
 - Robust Low-Rank Multi-Task Learning
- Clustered Multi-Task Learning
- Graph Regularized
- Many more...

ning	GitHub
earning	
ng	
Ojiayuzhou/MALS/	AR · GitHul ×
	, Inc. [US] https://gitnub.com/jiayuznou/k
GitHub	This repository Search

jiayuzhou / MALSAR

An Example

MALSAR/example_Dirty.m ×

C A GitHub, Inc. [US] https://github.com/jiayuzhou/MALSAR/blob/mas.

```
35
                                                               36
                                                                    clear;
                                                                    clc;
                                                               37
                                                               38
                                                                    close;
                                                               39
                                                                    addpath('../MALSAR/functions/dirty/'); % load function
                                                               40
                                                                    addpath('../MALSAR/c_files/prf_lbm/'); % load projection c libraries.
                                                               41
                                                                    addpath('../MALSAR/utils/'); % load utilities
                                                               42
                                                               43
                                                                    %rng('default');
                                                                                        % reset random generator. Available from Matlab 201
                                                               44
                                                               45
                                                                    %generate synthetic data.
                                                               46
                                                                    dimension = 500;
                                                               47
                                                                    sample_size = 50;
                                                               48
                                                                    task = 50;
                                                               49
                                                                    X = cell(task ,1);
     Create a random MT
                                                               50
                                                                    Y = cell(task ,1);
                                                               51
                                                                    for i = 1: task
                                                               52
     dataset
                                                                       X{i} = rand(sample_size, dimension);
                                                               53
                                                                       Y{i} = rand(sample_size, 1);
                                                               54
                                                               55
                                                                    end
                                                               56
                                                               57
                                                                    opts.init = 0;
                                                                                       % guess start point from data.
                                                                                       % terminate after relative objective value does not
                                                                    opts.tFlag = 1;
                                                               58
                                                               59
                                                                    opts.tol = 10^{-4};
                                                                                       % tolerance.
                                                                    opts.maxIter = 500; % maximum iteration number of optimization.
                                                               60
                                                               61
                                                                    rho 1 = 350;% rho1: group sparsity regularization parameter
                                                               62
                                                                                  rho2: elementwise sparsity regularization parameter
                                                               63
                                                                    rho_2 = 10;%
                                                               6
Invoke an MTL algorithm
                                                                    [W funcVal P Q] = Least_Dirty(X, Y, rho_1, rho_2, opts);
```

Thanks!