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ABSTRACT
Alzheimer’s Disease (AD), the most common type of de-
mentia, is a severe neurodegenerative disorder. Identifying
markers that can track the progress of the disease has re-
cently received increasing attentions in AD research. A
definitive diagnosis of AD requires autopsy confirmation,
thus many clinical/cognitive measures including Mini Men-
tal State Examination (MMSE) and Alzheimer’s Disease As-
sessment Scale cognitive subscale (ADAS-Cog) have been
designed to evaluate the cognitive status of the patients and
used as important criteria for clinical diagnosis of probable
AD. In this paper, we propose a multi-task learning formu-
lation for predicting the disease progression measured by the
cognitive scores and selecting markers predictive of the pro-
gression. Specifically, we formulate the prediction problem
as a multi-task regression problem by considering the pre-
diction at each time point as a task. We capture the intrinsic
relatedness among different tasks by a temporal group Lasso
regularizer. The regularizer consists of two components in-
cluding an ℓ2,1-norm penalty on the regression weight vec-
tors, which ensures that a small subset of features will be
selected for the regression models at all time points, and a
temporal smoothness term which ensures a small deviation
between two regression models at successive time points.
We have performed extensive evaluations using various types
of data at the baseline from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database for predicting the fu-
ture MMSE and ADAS-Cog scores. Our experimental stud-
ies demonstrate the effectiveness of the proposed algorithm
for capturing the progression trend and the cross-sectional
group differences of AD severity. Results also show that
most markers selected by the proposed algorithm are con-
sistent with findings from existing cross-sectional studies.
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1. INTRODUCTION
Alzheimer’s disease (AD), the most common type of de-

mentia, is characterized by the progressive impairment of
neurons and their connections resulting in loss of cognitive
function and ultimately death [20]. AD currently affects
about 5.3 million individuals in United States and more than
30 million worldwide with a significant increase predicted in
the near future [5]. Alzheimer’s disease has been not only
the substantial financial burden to the health care system
but also the psychological and emotional burden to patients
and their families. As the research on developing promising
new treatments to slow or prevent AD progressing, the need
for markers that can track the progress of the disease and
identify it early becomes increasingly urgent.

A definitive diagnosis of AD can only be made through
an analysis of brain tissue during a brain biopsy or au-
topsy [18]. Many clinical/cognitive measures have been de-
signed to evaluate the cognitive status of the patients and
used as important criteria for clinical diagnosis of proba-
ble AD, such as Mini Mental State Examination (MMSE)
and Alzheimer’s Disease Assessment Scale cognitive subscale
(ADAS-Cog) [25]. MMSE has been shown to be correlated
with the underlying AD pathology and progressive deterio-
ration of functional ability [18]. ADAS-Cog is the gold stan-
dard in AD drug trial for cognitive function assessment [31].
Since neurodegerenation of AD proceeds years before the on-
set of the disease and the therapeutic intervention is more
effective in the early stage of the disease, there is thus an ur-
gent need to address two major research questions: (1) how
can we predict the progression of the disease measured by
cognitive scores, e.g., MMSE and ADAS-Cog? (2) what is
the smallest set of features (measurements) most predictive
of the progression? The prime candidate markers for track-
ing disease progression include neuroimages such as mag-
netic resonance imaging (MRI), cerebrospinal fluid (CSF),
and baseline clinical assessments [12].

The relationship between the cognitive scores and possible
risk factors such as age, APOE gene, years of education and
gender has been previously studied [36, 17]. Many existing
works analyzed the relationship between cognitive scores and



imaging markers based on MRI such as gray matter volumes,
density and loss [3, 8, 15, 16, 33], shape of ventricles [14,
34] and hippocampal [34] by correlating these features with
baseline MMSE scores. In [13], the intensity and volume
of medial temporal lobe altogether with other risk factors
and the gray matter were shown to be correlated with the 6-
month MMSE score, which allowed us to predict near-future
clinical scores of patients. Relations between 6-month atro-
phy patterns in medial temporal region and memory dec-
lination in terms of clinical scores had also been examined
in [27]. To predict the longitudinal response to Alzheimer’s
Disease progression, Ashford and Schmitt built a model with
horologic function using “time-index” to measure the rate of
dementia progression [4]. In [10], the so-called SPARE-AD
index was proposed based on spatial patterns of brain at-
rophy and its linear effect against MMSE was reported. In
a more recent study by Ito et al., the progression rate of
cognitive scores was modeled using power functions [17].
Most existing work employed either the regression model

[13, 33] or the survival model [37] for modeling the disease
progression. The correlation between the ground truth and
the prediction is used to evaluate the model [13, 33]. When
the size of covariates is small, each covariate can be indi-
vidually added to the model to examine its effectiveness for
predicting the target [17, 38], or univariate analysis is per-
formed individually on all covariates and those who exceed a
certain significance threshold are included in the model [27].
When the number of covariates is large and significant corre-
lations among covariates exist, these approaches are subop-
timal. To deal with the curse of dimensionality, dimension
reduction techniques are commonly employed. Duchesne et
al. used principle components analysis (PCA) to build a low
dimensional feature space from image data [13]. An obvi-
ous disadvantage of dimension reduction techniques such as
PCA is that the model is no longer interpretable, since all
features are involved. Stonnington et al. used relevance vec-
tor regression (RVR), which integrated feature selection in
the training stage [33]. These approaches only predict clini-
cal scores at a single time point and their performances are
far from satisfactory to be clinically useful for AD prognosis.
In this paper, we propose a multi-task learning formula-

tion for predicting the progression of the disease measured
by the clinical scores at multiple time points and simultane-
ously selecting markers predictive of the progression. Specif-
ically, we formulate the prediction of clinical scores at a se-
quence of time points as a multi-task regression problem,
where each task concerns the prediction of a clinical score
at one time point. Multi-task learning aims at improving
the generalization performance by learning multiple related
tasks simultaneously. The key of multi-task learning is to
exploit the intrinsic relatedness among the tasks. For the
disease progression considered in this paper, it is reasonable
to assume that a small subset of features is predictive of the
progression, and the multiple regression models from dif-
ferent time points satisfy the smoothness property, that is,
the difference of the cognitive scores between two successive
time points is small. To this end, we develop a novel multi-
task learning formulation based on a temporal group Lasso
regularizer. The regularizer consists of two components in-
cluding an ℓ2,1-norm penalty [39] on the regression weight
vectors, which ensures that a small subset of features will be
selected for the regression models at all time points, and a

temporal smoothness term, which ensures a small deviation
between two regression models at successive time points.

We have performed extensive experimental studies to eval-
uate the effectiveness of the proposed algorithm. We use
various types of data from the Alzheimer’s Disease Neu-
roimaging Initiative (ADNI) database including MRI scans,
CSF, and clinical scores at the baseline to predict the MMSE
and ADAS-Cog scores for the next three years. Our ex-
perimental studies show that the proposed algorithm bet-
ter captures the progression trend and the cross-sectional
group differences of AD severity than existing methods. Re-
sults also show that most markers selected by the proposed
algorithm are consistent with findings from existing cross-
sectional studies.

2. PROPOSED MULTI-TASK REGRESSION
FORMULATION

In the longitudinal AD study, we measure the cognitive
scores of selected patients repeatedly at multiple time points.
By considering the prediction of cognitive scores at a single
time point as a regression task, we formulate the progression
of clinical scores as a multi-task regression problem. We em-
ploy the multi-task regression formulation instead of solving
a set of independent regression problems since the intrinsic
temporal smoothness information among different tasks can
be incorporated into the model as prior knowledge.

Consider a multi-task regression problem of t time points
with n training samples of d features. Let {x1, x2, · · · , xn}
be the input data at the baseline, and {y1, y2, · · · , yn} be the
targets, where each xi ∈ Rd represents a sample (patient),
and yi ∈ Rt is the corresponding targets (clinical scores)
at different time points. In this paper we employ linear
models for the prediction. Specifically, the prediction model
for the ith time point is given by f i(x) = xTwi, where wi

is the weight vector of the model. Let X = [x1, · · · , xn]
T ∈

Rn×d be the data matrix, Y = [y1, · · · , yn]T ∈ Rn×t be
the target matrix, and W =

[
w1, w2, ..., wt

]
∈ Rd×t be the

weight matrix. One simple approach is to estimate W by
minimizing the following objective function:

min
W

∥XW − Y ∥2F + θ1 ∥W∥2F , (1)

where the first term measures the empirical error on the
training data, the second (penalty) term controls the gen-
eralization error, θ1 > 0 is a regularization parameter, and
∥.∥F is the Frobenius norm of a matrix. The regression
method above is known as the ridge regression and it ad-
mits an analytical solution given by:

W = (XTX + θ1I)
−1XTY. (2)

One major limitation of the regression model above is that
the tasks at different time points are assumed to be inde-
pendent with each other, which is not the case in the longi-
tudinal AD study considered in this paper.

2.1 Temporal Smoothness Prior
To capture the temporal smoothness of the cognitive scores

at different time points, we introduce a regularization term
in the regression model that penalizes large deviations of
predictions at neighboring time points, resulting in the fol-



lowing formulation:

min
W

∥XW − Y ∥2F + θ1 ∥W∥2F + θ2

t−1∑
i=1

∥∥∥wi − wi+1
∥∥∥2

2
, (3)

where θ2 ≥ 0 is a regularization parameter controlling the
temporal smoothness. This temporal smoothness term can
be expressed as:

t−1∑
i=1

∥∥∥wi − wi+1
∥∥∥2

F
= ∥WH∥2F ,

where H ∈ Rt×(t−1) is defined as follows: Hij = 1 if i =
j, Hij = −1 if i = j + 1, and Hij = 0 otherwise. The
formulation in Eq.(3) becomes:

min
W

∥XW − Y ∥2F + θ1 ∥W∥2F + θ2 ∥WH∥2F . (4)

The optimization problem in Eq.(4) admits an analytical
solution, as shown below. First, we take the derivative of
Eq.(4) with respect to W and set it to zero:

XTXW −XTY + θ1W + θ2WHHT = 0, (5)(
XTX + θ1Id

)
W +W

(
θ2HHT

)
= XTY, (6)

where Id is the identity matrix of size d by d. Since both ma-
trices (XTX+θ1Id) and θ2HHT are symmetric, we write the
eigen-decomposition of these two matrices by Q1Λ1Q

T
1 and

Q2Λ2Q
T
2 , where Λ1 = diag(λ

(1)
1 , λ

(2)
1 , . . . , λ

(d)
1 ) and Λ2 =

diag(λ
(1)
2 , λ

(2)
2 , . . . , λ

(d)
2 ), are their eigenvalues, and Q1 and

Q2 are orthogonal. Plugging them into Eq. (6) we get:

Q1Λ1Q
T
1 W +WQ2Λ2Q

T
2 = XTY, (7)

Λ1Q
T
1 WQ2 +QT

1 WQ2Λ2 = QT
1 X

TY Q2. (8)

Denote Ŵ = QT
1 WQ2 and D = QT

1 X
TY Q2. Eq.(8) be-

comes Λ1Ŵ + ŴΛ2 = D. Thus Ŵ is given by:

Ŵi,j =
Di,j

λ
(i)
1 + λ

(j)
2

. (9)

The optimal weight matrix is then given by W ∗ = Q1ŴQT
2 .

2.2 Dealing with Incomplete Data
The clinical scores for many patients are missing at some

time points, i.e., the target vector yi ∈ Rt may not be com-
plete. A simple strategy is to remove all patients with miss-
ing target values, which, however, significantly reduces the
number of samples. We consider to extend the formulation
in Eq.(4) with missing target values in the training process.
In this case, the analytical solution to Eq.(4) no longer ex-
ists. We show how the algorithm above can be adapted to
deal with missing target values.
We use a matrix S ∈ Rn×t to indicate missing target

values, where Si,j = 0 if the target value of sample i is
missing at the jth time point, and Si,j = 1 otherwise. We
use the componentwise operator ⊙ as follows: Z = A ⊙ B
denotes zi,j = ai,jbi,j , for all i, j. The formulation in Eq.(4)
can be extended to the case with missing target values as:

min
W

∥S ⊙ (XW − Y )∥2F + θ1 ∥W∥2F + θ2 ∥WH∥2F . (10)

Denote Pr(.) as the row selection operator parameterized by
a selection vector r. The resulting matrix of Pr(A) includes
only Ai such that ri ̸= 0, where Ai is the ith row of A.

Let Si be the ith column of S. We therefore denote X(i) =

PSi(X) ∈ Rni×d as the input data matrix of the ith task,
and y(i) = PSi(Y i) ∈ Rni×1 as the corresponding target
vector, where ni is number of samples from the ith task.

Similar to the case without missing target values consid-
ered in Section 2.1, we take the derivative of Eq.(10) with
respect to wi (2 ≤ i ≤ t− 1) and set it to zero:

Awi−1 +Miw
i +Awi+1 = Ti, (11)

where A, Mi, and Ti are defined as follows:

A = −θ2Id,

Mi = XT
(i)X(i) + θ1Id + 2θ2Id,

Ti = XT
(i)y(i).

For the special case i = 1, the term
∥∥wi−1 − wi

∥∥2

2
does not

exist, nor is the term
∥∥wi − wi+1

∥∥2

2
for i = t. We com-

bine the equations for all tasks (1 ≤ i ≤ t), which can be
represented as a block tridiagonal linear system:

M1 A 0
A M2 A

. . .

A Mt−1 A
0 A Mt




w1

w2

...
wt−1

wt

 =


T1

T2

...
Tt−1

Tt

 (12)

For a general linear system of size td, it can be solved using
Gaussian elimination with a time complexity of O((td)3).
For our block tridiagonal system, the complexity is reduced
to O(d3t) using block Gaussian elimination. For large-scale
linear systems, the LSQR algorithm [30], a popular iterative
method for the solution of large linear systems of equations,
can be employed with a time complexity of O(Ntd2), where
N , the number of iterations, is typically small.

2.3 Temporal Group Lasso Regularization
Because of the limited availability of subjects in the longi-

tudinal AD study and a relatively large number of features
at ADNI including MRI features, the prediction model suf-
fers from the so called“curse of dimensionality”. In addition,
many patients drop out from the longitudinal study after a
certain period of time, which reduces the effective number of
samples. One effective approach is to reduce the dimension-
ality of the data. However, traditional dimension reduction
techniques such as PCA are not desirable since the resulting
model is not interpretable, and traditional feature selection
algorithms are not suitable for multi-task regression with
missing target values. In the proposed formulation, we em-
ploy the group Lasso regularization based on the ℓ2,1-norm
penalty for feature selection [39], which assumes that a small
set of features are predictive of the progression. The group
Lasso regularization ensures that all regression models at
different time points share a common set of features. To-
gether with the temporal smoothness penalty, we obtain the
following formulation:

min
W

∥S⊙(XW − Y )∥2F+θ1∥W∥2F+θ2∥WH∥2F+δ∥W∥2,1 (13)

where ∥W∥2,1 =
∑d

i=1

√∑t
j=1 W

2
ij , and δ is a regularization

parameter. When there is only one task, i.e., t = 1, the
above formulation reduces to Lasso [35]. When t > 1, the
weights of one feature over all tasks are grouped using the



ℓ2-norm, and all features are further grouped using the ℓ1-
norm. Thus, the ℓ2,1-norm penalty tends to select features
based on the strength of the feature over all t tasks.
The objective in Eq.(13) can be considered as a combina-

tion of a smooth term and a non-smooth term. The gradient
descent or accelerated gradient method (AGM) [29, 28] can
be applied to solve the optimization. One of the key steps
in AGM is the computation of the proximal operator as-
sociated with the ℓ2,1-norm regularization. We employ the
algorithm in the SLEP package [22], which computes the
proximal operator associated with the general ℓ1/ℓq-norm
efficiently.

2.3.1 Longitudinal Stability Selection
An important issue in the practical application of the pro-

posed formulation is the selection of an appropriate amount
of regularization, known as model selection. Cross validation
is commonly used for model selection, however it tends to se-
lect more features than needed [26]. In this paper, we adapt
stability selection to perform model selection for the pro-
posed multi-task regression. Stability selection is a method
recently proposed to address the problem of proper regular-
ization using subsampling/bootstrapping [26]. It should be
noted that in our formulation we find in our experiments
that the list of top features selected by stability selection is
not sensitive to the regularization parameters θ1 and θ2. We
thus focus on the selection of δ, which controls the sparsity
of the model, in stability selection.
Let K be the index set of features, i.e., k ∈ K denotes a

feature. Given a set of regularization parameter values ∆
and an iteration number γ, longitudinal stability selection
works as follows. Let B(j) = {BX

(j), B
Y
(j)} be a random sub-

sample from {X,Y } of size ⌊n/2⌋ without replacement. For

a given δ > 0, let W̃ (j) be the optimal solution of Eq.(13) on

B(j). Denote Uδ(B(j)) = {k : W̃
(j)
k ̸= 0} as the set of fea-

tures selected by the model W̃ (j). This process is repeated
for γ times and selection probability Π̂δ

k of each feature k
is given by

∑γ
j=1 I(k ∈ Uδ(B(j)))/γ, where I(.) is the indi-

cator function defined as follows: I(c) = 1 if c is true and

I(c) = 0 otherwise. It is clear that Π̂δ
k computes the fraction

of bootstrap experiments for which the feature k is selected.
Repeat the above procedure for all δ ∈ ∆, and we define the
stability score for each feature k by S(k) = maxδ∈∆(Π̂δ

k).

To find a suitable size of stable feature set Û stable we can
either use top η stable features:

Û stable = {k : S(k) ranks among top η in K},

or use threshold πthr on the stability score:

Û stable = {k : S(k) ≥ πthr}.

In our application we choose the top η features. Indeed,
cross validation can be performed to determine how many
features are needed. However, our empirical results show
that using top η = 20 features is sufficient in most cases of
our application.

2.4 Proposed Algorithm
One undesired property of sparse learning methods such

as Lasso is that the coefficients corresponding to relevant
features are shrunk towards zero [40]. This shrinkage ef-
fect would lead to sub-optimal performance. To resolve
this problem, existing methods apply adaptive regulariza-

tion [42], multiple thresholding procedures [41], or multi-
stage methods [23, 40]. In this paper, we employ a standard
two-stage procedure. In the first stage the algorithm selects
features using longitudinal stability selection, resulting in a
subset of features Ûstable. In the second stage the algorithm
performs temporal smoothness regularized regression using
selected features. We summarize the proposed algorithm in
Algorithm 1.

Algorithm 1 Temporal Group Lasso Multi-Task Regression
(TGL)

Input: S, X, Y, θ1, θ2 ∆, γ, η
Output: W ∗, Û stable

1: Stage 1: longitudinal stability selection
2: Set K = {the feature set in X}
3: for δ ∈ ∆ do
4: for j = 1 to γ do
5: Subsample B(j) = {BX

(j), B
Y
(j)} from {X,Y }

6: Compute W̃ (j) by solving Eq.(13) with δ,B(j)

7: Set Uδ(B(j)) = {k : W̃ (j) ̸= 0}
8: end for
9: Calculate Π̂δ

k =
∑γ

j=1 I(k ∈ Uδ(B(j)))/γ, ∀k ∈ K
10: end for
11: Calculate S(k) = maxδ∈∆(Π̂δ

k), ∀k ∈ K

12: Set Û stable = {k: S(k) ranks among top η in K}
13: Stage 2: temporal smoothness regularized regression
14: Set X̂ = X restricted to the features from Û stable

15: if ∃p, q such that Sp,q = 0 then

16: Set t = number of tasks, d = |Û stable|, A = −θ2Id
17: for i = 1 to t do
18: X(i) = Pi

S(X̂), y(i) = Pi
S(Y

i)

19: Mi = XT
(i)X(i) + θ1Id + 2θ2Id, Ti = XT

(i)y(i)
20: end for
21: Obtain W ∗ by solving Eq.(12) with {Mi}, {Ti}.
22: else
23: Compute the analytical solution W ∗ as in Section 2.1.
24: end if

3. EXPERIMENTS
In this section we evaluate the proposed algorithm on the

ADNI database1. The source codes are available online [1].

3.1 Experimental Setup
In the ADNI project, MRI scans, CSF measurements, and

clinical scores from selected patients are obtained repeatedly
over a 6-month or 1-year interval. We denote each time
point by the duration starting from the baseline when the
patient came to the hospital for screening. For instance,
M06 indicates 6 months after the baseline. We use different
combinations of MRI (M), CSF (C), and META (M) (see
Table 1) at baseline to predict MMSE and ADAS-Cog scores
at four time points: M06, M12, M24, and M36.

For MRI, we download 1.5T MRI data of 675 patients pre-
processed by UCSF using FreeSurfer. MRI features can be
grouped into 5 categories: cortical thickness average (CTA),
cortical thickness standard deviation (CTStd), volume of
cortical parcellation (Vol. Cort.), volume of white mat-
ter parcellation (Vol. WM.), and surface area (Surf. A.).
There are 313 MRI features in total. We remove all sam-
ples which fail the MRI quality controls. For other feature

1www.loni.ucla.edu/ADNI/



Table 1: Features included in the META dataset.
Note that the cognitive scores at the baseline are
used to predict the future cognitive scores. A de-
tailed explanation of each cognitive score and lab
test can be found at [1].

Type Details
Demographic age, yrs. of education, gender
Genetic ApoE-ε4 information
Cognitive
scores

MMSE, ADAS-Cog, ADAS-MOD, ADAS sub-
scores, CDR, FAQ, GDS, Hachinski, Neu-
ropsychological Battery, WMS-R Logical
Memory

Lab tests RCT1, RCT11, RCT12, RCT13, RCT14,
RCT1407, RCT1408, RCT183, RCT19,
RCT20, RCT29, RCT3, RCT392, RCT4,
RCT5, RCT6, RCT8

sets, we remove samples with missing entries. Each feature
combination includes the intersection of available samples,
that is the combined dataset has no missing values. Be-
cause changes of MMSE and ADAS-Cog are both found to
be closely correlated with the baseline MMSE score [17],
we include the baseline MMSE score in all feature combina-
tions. With the pre-processing procedure described above,
the number of samples available for MMSE and ADAS-Cog
at different time points are described in Table 2.

Table 2: The first column of the table indicates the
different combinations of three datasets. The num-
bers of samples for different combinations available
for both MMSE and ADAS-Cog at different time
points are shown in the table together with the data
dimensionality (Dim). C, E, and M refer to CSF,
META, and MRI, respectively.

MMSE ADAS-Cog
Dim

M06 M12 M24 M36 M06 M12 M24 M36
C 332 331 295 198 332 328 294 194 6
E 648 641 567 387 646 636 563 377 52
CE 332 331 295 198 332 328 294 194 57
M 648 641 567 387 646 636 563 377 306
EM 648 641 567 387 646 636 563 377 357
CM 332 331 295 198 332 328 294 194 311
CEM 332 331 295 198 332 328 294 194 362

3.2 Prediction Performance
In this experiment, we compare our proposed approach

with ridge regression on the prediction of MMSE and ADAS-
Cog using various types of data combinations. We report
the results based on the leave-one-out scheme due to the
small sample size. 5-fold cross validation is used to select
model parameters (θ1, θ2 in our approach and θ1 in ridge
regression) in the training data (between 10−3 and 103).
To compare with related works [33, 13], we use correlation
coefficient (R-value) given by the correlation between the
predicted values and the ground truth, and its correlation
significance (P-value) as the evaluation criteria. P-value is
given by testing the hypothesis of no correlation [2]. A good
prediction model has a high R-value and low P-value (less
than 0.0001 for example). The overall performance of the
prediction is averaged across all time points weighted by the
sample size.
The results for MMSE and ADAS-Cog are summarized in

Tables 3 and 4, respectively. Overall, the proposed approach

significantly outperforms ridge regression. This is especially
the case when the feature space is large and the sample size
is small, e.g., CM and CEM (see Table 2). Note that multi-
task learning effectively increases the number of samples by
learning multiple related tasks simultaneously, while ridge
regression treats all tasks independently. Our results verify
the effectiveness of multi-task learning for disease progres-
sion.

Table 3: Comparison of our proposed approach
(TGL) and ridge regression (RidR) on longitudinal
MMSE prediction using different data combinations
measured by R-value and average P-value. Perfor-
mance at each time point is reported in terms of R-
value. Weighted averages of R-values and P-values
across all time points are also given.

M06 M12 M24 M36 AvgR P-Val

C
TGL 0.74 0.72 0.71 0.65 0.71 3.3e-026
RidR 0.74 0.72 0.71 0.65 0.71 3.3e-026

E
TGL 0.83 0.84 0.84 0.78 0.82 7.4e-080
RidR 0.82 0.83 0.84 0.76 0.82 2.8e-075

CE
TGL 0.80 0.82 0.82 0.72 0.80 7.2e-034
RidR 0.77 0.80 0.79 0.71 0.77 7.8e-033

M
TGL 0.77 0.75 0.77 0.70 0.75 2.7e-059
RidR 0.68 0.67 0.71 0.63 0.68 1.2e-045

EM
TGL 0.83 0.84 0.85 0.80 0.83 3.8e-088
RidR 0.71 0.71 0.74 0.54 0.69 7.1e-032

CM
TGL 0.73 0.73 0.76 0.69 0.73 1.3e-030
RidR 0.25 0.34 0.36 0.48 0.35 1.0e-006

CEM
TGL 0.80 0.83 0.83 0.72 0.80 8.4e-034
RidR 0.29 0.36 0.59 0.56 0.43 2.4e-008

Table 4: Comparison of our proposed approach
(TGL) and ridge regression (RidR) on longitudinal
ADAS-Cog prediction using different data combina-
tions measured by R-value and average P-value.

M06 M12 M24 M36 AvgR P-Val

C
TGL 0.70 0.71 0.71 0.66 0.70 1.7e-026
RidR 0.70 0.71 0.70 0.66 0.70 1.5e-026

E
TGL 0.87 0.87 0.86 0.83 0.86 2.6e-099
RidR 0.87 0.86 0.86 0.83 0.86 4.1e-097

CE
TGL 0.86 0.85 0.86 0.80 0.85 1.7e-044
RidR 0.86 0.84 0.85 0.74 0.83 2.7e-035

M
TGL 0.75 0.78 0.76 0.74 0.76 4.4e-066
RidR 0.66 0.71 0.67 0.61 0.67 4.9e-041

EM
TGL 0.87 0.87 0.86 0.84 0.86 3.2e-104
RidR 0.80 0.81 0.80 0.70 0.79 2.4e-058

CM
TGL 0.75 0.77 0.75 0.74 0.76 2.5e-035
RidR 0.55 0.60 0.62 0.53 0.58 5.4e-016

CEM
TGL 0.87 0.86 0.87 0.81 0.86 1.9e-046
RidR 0.69 0.66 0.63 0.40 0.62 8.6e-010

In Table 5 we compare our approach with three closely
related works. In [13], PCA was employed to reduce the
dimensionality of the MRI data. Since only limited samples
were used, the proposed method resulted in low prediction
performance. To the best of our knowledge, the work in [13]
is the only one that tried to predict cognitive scores at future
time points and reported R/P-Value for comparison. The
other two works used the ADNI database as in our study.
Stonnington’s work predicted baseline cognitive scores us-
ing relevance vector regression (RVR) which enforced spar-
sity in the model [33]. Their regression results were better
than those reported in [13]. However their prediction per-
formance is much lower than ours. This is possibly due



to the use of different prediction models. Specifically, the
model in [33] did not utilize rich temporal smoothness infor-
mation as in the proposed approach. In [17], very limited
risk factors were manually included and tested in their pro-
gression model. No actual prediction on the test data was
performed. Instead, a visual comparison of the proposed
model for different groups was provided, which was similar
to our cross-sectional analysis in Section 3.3. It is hard to di-
rectly compare their approach with ours, since no prediction
measures were reported in [17].

3.3 Cross-Sectional Progression
In this experiment, we study the cross-sectional progres-

sion patterns. We predict the progression of different patient
groups using models built by ridge regression and our pro-
posed approach on the CEM dataset. The predicted progres-
sions for different groups including AD, MCI, and NL2 are
visualized in a cross-sectional fashion with the mean values
of prediction by different methods and the group truth pro-
vided. The results are summarized in Figure 1 and Figure 2.
For MMSE, the target progression in probable AD patients
shows a significant declination pattern, with an annual decli-
nation of 3.167±0.40. For MCI patients we observe a slight
annual declination of 0.919 ± 0.188. For normal controls,
the MMSE scores are very stable with an annual declina-
tion of 0.032± 0.025. A similar pattern can be observed for
ADAS-Cog. Probable AD patients have an annual growth
on ADAS-Cog of 7.066 ± 2.257, while for the MCI group
the annual growth is 1.558 ± 0.401. In normal controls, we
observe a very small annual change (0.007± 0.565).
We can also observe from Figure 1 and Figure 2 that the

proposed approach can better capture the characteristics of
the disease progression measured by clinical scores for dif-
ferent groups of patients. The proposed method performs
significantly better than ridge regression for the probable
AD group and the MCI group at M36 where the number
of training samples is small. The result further verifies the
effectiveness of multi-task learning for disease progression
especially for small sample size problems.

3.4 Feature Evaluation
In this experiment we evaluate the relevance of features se-

lected by longitudinal stability selection on different feature
combinations. Given the range of regularization parameter
values ∆, the set of selected features is a function of input
data X and target Y , thus for the same data set X but dif-
ferent targets (clinical scores) Y , the algorithm may select
different features. Indeed, although different clinical scores
are used to measure the cognition status, they may empha-
size different aspects of the AD pathology.
The top MRI markers selected by longitudinal stability

selection are shown in Figure 3. We observe that volume of
left hippocampus, CTA of middle temporal gyri and CTA of
left and right entorhinal are among the most stable features
for both MMSE and ADAS-Cog scores. These findings agree
with the known knowledge that in the pathological pathway
of AD, medial temporal lobe (hippocampus and entorhinal
cortex) is firstly affected, followed by progressive neocortical
damage [7, 11]. Evidence of a significant atrophy of middle
temporal gyri in AD patients has also been observed in pre-

2AD, MCI, and NL refer to Alzheimer’s Disease patients,
Mild Cognitive Impairment patients, and normal controls,
respectively.
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Figure 1: Visual predictive comparison for MMSE
on the CEM dataset. The first, second, third,
and fourth rows show the results for the complete
dataset (ALL), the AD group (AD), the MCI group
(MCI), and the NL group (NL), respectively. The
left column shows ridge regression results. The mid-
dle column shows the results using our proposed ap-
proach. The ground truth values are plotted in the
right column. The red line connects the mean values
of each time point.

vious studies [9, 19, 3]. Besides hippocampus and middle
temporal, we also find isthmus cingulate a very stable feature
for MMSE. The atrophy of isthmus cingulate is considered
high in AD patients [24]. In addition, CTA of left inferior
parietal and volume of right inferior parietal are also found
to be stable. This agrees with evidence from the previous
study that includes pathological confirmation of the diag-
nosis [21], which shows that parietal atrophy contributes to
predictive values for diagnosing AD.

To access the effectiveness of CSF features, we perform
longitudinal stability selection on the data combining CSF
and MRI (Figure 4). In CSF, we use 3 simple features (Aβ-
42, t-tau and p-tau) and 2 ratio features (t-tau/Aβ-42 and
p-tau/Aβ-42). We observe that Aβ-42 and p-tau are among
the top three markers, whereas t-tau is not selected in both
targets.

Figure 5 shows the stability results of META features (see
Table 1). Baseline clinical test scores (MMSE, ADAS-MOD,
ADAS-Cog, ADAS-Cog subscores, CDR) and neuropsycho-
logical test scores (TRAASCORE, GATVEGESC) are found
to be important features for both scores. Among ADAS-Cog
subscores, Word Recall (subscore 1) and Orientation (sub-
score 7) are found to be important. These findings agree
with recent itemized ADAS-Cog analysis, where orientation
was found to be the most sensitive item in cross-sectional
study of cognitive impairment [32]. The results of stability
selection after adding META to MRI are shown in Figure 6.
Many MRI features have low stability scores. A possible
explanation is that some clinical tests included in META



Table 5: Comparison of the proposed approach with three related works in the literature. AD, MCI, and NL
refer to Alzheimer’s Disease patients, Mild Cognitive Impairment patients, and normal controls, respectively.

Method Target Subjects Feature Result
Duchesne et al. [13] M06 MMSE 75 NL, 49 MCI, 75 AD Baseline MRI, age,

gender, years of educa-
tion

MMSE: 0.31 (p=0.03)

Stonnington et al. [33] baseline
MMSE and
ADAS-Cog

Set1: 73 AD, 91 NL
Set2 (ADNI): 113 AD,
351 MCI, 122 NL

Baseline MRI, CSF MMSE: Set1: 0.7 (p<10e-5) Set2:
0.48 (p<10e-5) ADAS-Cog: Set2:
0.57 (p<10e-5)

Ito et al. [17] M06-M36
ADAS-Cog

ADNI: 186 AD, 402
MCI, 229 NL

Age, APOE4, gender,
family history, years of
education

Only visual check. R/P value not
report

Our approach M06-M36
MMSE and
ADAS-Cog

ADNI: 133 AD, 304
MCI, 188 NL

Baseline MRI, CSF,
and META (see Table
1 for details)

Avg MMSE: 0.83 (p=3.8e-88)
Avg ADAS-Cog: 0.86
(p=3.2e-104)
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Figure 2: Visual predictive comparison for ADAS-
Cog on the CEM dataset.

features reflect white matter and/or gray matter changes,
as discussed in [6].
Next we perform stability selection by adding all three

types of features together. Results are shown in Figure 7.
We can observe from the figure that there are many features
in common for both targets: baseline ADAS-Cog, ADAS-
MOD and MMSE; baseline ADAS-Cog subscores 1 and 7;
Logic LIMMTOTAL; APOE and DIGITSCOR.

4. CONCLUSION
In this paper, we study the feasibility of predicting AD

progression measured by cognitive scores based on baseline
measurements. Specifically, we formulate the progression
prediction as a multi-task regression problem by consider-
ing the prediction of cognitive scores at each time point as
a task. To capture the intrinsic relatedness among differ-
ent tasks at different time points, we propose a temporal
group Lasso regularizer, which ensures a small deviation be-
tween two regression models at successive time points based
on a small subset of features. The effectiveness of the pro-
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Figure 3: Longitudinal stability selection results for
MMSE and ADAS-Cog on MRI data.

posed approach in predicting disease progression and feature
selection is evaluated by extensive experimental studies on
the ADNI database. Results show that the proposed ap-
proach can better capture the progression trends than exist-
ing methods. Results also show that most features selected
by the proposed approach are consistent with findings from
existing cross-sectional studies. Our experimental studies
demonstrate the promise of multi-task learning for predict-
ing disease progression.

Our proposed formulation for AD progression prediction
and feature selection is able to deal with missing values in the
target matrix. Missing values in the input matrix, however,
cannot be handled. Recent advances on matrix completion
have allowed us to complete matrices with many missing
values under certain conditions. We will explore such tech-
niques for dealing with missing values in the input data. In
addition, in this study we only focus on linear models; we
plan to explore non-linear models in the future.
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Figure 4: Longitudinal stability selection results for
MMSE and ADAS-Cog on MRI+CSF data.
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Figure 5: Longitudinal stability selection results for
MMSE and ADAS-Cog on META data.
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Figure 6: Longitudinal stability selection results for
MMSE and ADAS-Cog on MRI+META data.
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Figure 7: Longitudinal stability selection results for
MMSE and ADAS-Cog on MRI+META+CSF data.
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