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ABSTRACT
Multi-task learning (MTL) aims at improving the generalization
performance by utilizing the intrinsic relationships among multiple
related tasks. A key assumption in most MTL algorithms is that all
tasks are related, which, however, may not be the case in many real-
world applications. In this paper, we propose a robust multi-task
learning (RMTL) algorithm which learns multiple tasks simultane-
ously as well as identifies the irrelevant (outlier) tasks. Specifically,
the proposed RMTL algorithm captures the task relationships using
a low-rank structure, and simultaneously identifies the outlier tasks
using a group-sparse structure. The proposed RMTL algorithm is
formulated as a non-smooth convex (unconstrained) optimization
problem. We propose to adopt the accelerated proximal method
(APM) for solving such an optimization problem. The key com-
ponent in APM is the computation of the proximal operator, which
can be shown to admit an analytic solution. We also theoretically
analyze the effectiveness of the RMTL algorithm. In particular,
we derive a key property of the optimal solution to RMTL; more-
over, based on this key property, we establish a theoretical bound
for characterizing the learning performance of RMTL. Our exper-
imental results on benchmark data sets demonstrate the effective-
ness and efficiency of the proposed algorithm.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications - Data Min-
ing

General Terms
Algorithms
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1. INTRODUCTION
Multi-task learning (MTL) aims at improving generalization per-

formance by utilizing the intrinsic relationships among multiple
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tasks. One key assumption in most of the existing MTL algorithms
is that all tasks are correlated via a certain structure, which, for
example, includes hidden units in neural networks [7], a common
prior in a hierarchical Bayesian model [3, 29, 35, 37], parameters in
Gaussian process covariance [17], kernels and regularizations [10],
and common feature representation [1, 9, 2, 27, 16, 34]. Under
such an assumption, the knowledge learned from one task is trans-
ferable to the other tasks and learning multiple tasks simultaneously
generally leads to improved performance.

In many real-world applications involving multiple tasks, it is
usually the case that a group of tasks are related while some other
tasks are irrelevant to such a group. Simply pooling all tasks to-
gether and learning them simultaneously under a presumed struc-
ture may degrade the overall learning performance. It is thus desir-
able to identify irrelevant (outlier) tasks in the development of the
multi-task learning algorithms. Learning multiple tasks under this
setting is usually referred to as robust multi-task learning [36].

Recently robust multi-task learning has received increasing at-
tention in the areas of data mining and machine learning. In [30,
33, 13], the task clustering (TC) approach is proposed for discov-
ering the common structures in multiple learning tasks. The main
idea behind the TC algorithms is to cluster similar tasks into differ-
ent groups and constrain the tasks from the same group to share the
same model representation or parameters. In [36, 38], multivariate
student t-processes and their generalization are proposed for distin-
guishing good tasks from noisy or outlier tasks. The t-processes-
based MTL algorithms model the relationship of multiple tasks us-
ing a task covariance matrix and they are robust by nature as t-
process is implicitly an infinite Gaussian mixture. In [26, 14], the
block-sparse structures (�1,∞-norm or �2,1-nrom) are employed to
extract essential features shared across the tasks and hence improve
the robustness of the learning algorithms.

In this paper, we propose a robust multi-task learning (RMTL)
algorithm which learns multiple tasks simultaneously as well as
identifies the irrelevant (outlier) tasks. Specifically, our proposed
RMTL algorithm captures the relationship of multiple related tasks
using a low-rank structure and meanwhile identifies the outlier tasks
using a group-sparse structure. The proposed RMTL algorithm
is formulated as a non-smooth convex (unconstrained) optimiza-
tion problem in which the least squares loss is regularized by a
nonnegative linear combination of the trace norm and the �1,2-
norm. The optimization problems involving the trace norm and
the �1,2-norm can be routinely reformulated as semi-definite pro-
grams or second-order cone programs, both of which, however, are
not scalable to large-scale data. We propose to adopt the accel-
erated proximal method (APM) for solving the proposed RMTL
formulation efficiently. One key component in applying APM for
solving RMTL is the computation of the associated proximal op-



erator, which is a non-smooth optimization problem involving two
optimization variables. The associated proximal operator can be
shown to admit an analytic solution. We also conduct theoretical
analysis on the performance bound of the composite regularization
in RMTL. We first present key properties of the optimal solution
to RMTL (Lemma 4.3). We then present an assumption associated
with the prescribed training samples and the geometric structures
of the matrices of interest; based on this assumption, we derive a
performance bound for the combined regularization for multi-task
regression (Theorem 4.1). We conduct simulations on benchmark
data sets to demonstrate the effectiveness and efficiency of the pro-
posed algorithm.

Notation DenoteNm = {1, · · · ,m}. For anyA = [a1, · · · , am] ∈
R

d×m, let ai ∈ R
d be the i-th column of A; denote by ‖ai‖2 the

�2-norm of ai; let ‖A‖∞,2 = ‖aj‖2, where j = argmaxi ‖ai‖2;
let ‖A‖1,2 =

∑m
i=1 ‖ai‖2; let {σi(A)}ri=1 be the set of non-zero

singular values in non-increasing order, where r = rank(A); de-
note by ‖A‖2 = σ1(A) and by ‖A‖∗ =

∑r
i=1 σi(A) the operator

norm and the trace norm of A, respectively.

2. ROBUST MTL FRAMEWORK
Assume that we are given m (regression) learning tasks. Each

task is associated with a set of training data

{(xi
1, y

i
1), · · · , (xi

ni
, yi

ni
)} ⊂ R

d × R, i ∈ Nm, (1)

and a linear predictive function fi as

fi(x
i
j) = wT

i x
i
j ≈ yi

j , xi
j ∈ R

d, yi
j ∈ R, (2)

where i and j index the task and the training sample respectively,
wi is the weight vector, ni and d denote the training sample size
and the feature dimensionality respectively.

We consider the multi-task learning setting where multiple tasks
are divided into two groups, i.e., the related tasks group and the
irrelevant (outlier) tasks group. We consider a composite structure
which couples the related tasks using a low-rank structure and iden-
tifies the outlier tasks using a group-sparse structure. Denote the
transformation matrix of the m tasks by W = [w1, · · · , wm] ∈
R

d×m. Specifically, W is given by the direct summation of a
low-rank matrix L = [l1, · · · , lm] ∈ R

d×m (of a smaller set
of basis factors), and a group-sparse (column-sparse) matrix S =
[s1, · · · , sm] ∈ R

d×m (of zero-vectors in the columns). The weight
vector of the i-th task can be expressed as

wi = li + si, li ∈ R
d, si ∈ R

d, i ∈ Nm, (3)

where li and si are from the aforementioned low-rank structure and
the group-sparse structure, respectively.

We propose a robust multi-task learning formulation (RMTL) to
learn multiple tasks simultaneously as well as identify the irrelevant
outlier tasks. Mathematically, RMTL is formulated as

min
L,S

L
(
(li + si)

Txi
j , y

i
j

)
+ α‖L‖∗ + β‖S‖1,2, (4)

where the trace norm regularization term encourages the desirable
low-rank structure in the matrix L (for coupling the related tasks),
and the �1,2-norm regularization term induces the desirable group-
sparse structure in the matrix S (for identifying the outlier tasks), α
and β are non-negative trade-off parameters, and L(·, ·) represents
the commonly used least squares loss function. Note that the em-
pirical evaluation of the (averaged) least square loss of the m tasks

over the prescribed training data can be expressed as

L
(
(li + si)

Txi
j , y

i
j

)
=

m∑
i=1

ni∑
j=1

1

mni

(
(li + si)

Txi
j − yi

j

)2
. (5)

Our motivation behind the proposed RMTL formulation in Eq. (4)
is as follows: if the i-th task is from the related tasks group, si
is expected to be a zero-vector and hence wi obeys the specified
low-rank structure constraint; on the other hand, if the i-th task is
from the outlier tasks group, si is expected to be non-zero and wi

is equal to a direct sum of li and the non-zero si.
The RMTL formulation in Eq. (4) is an unconstrained convex

optimization problem with a non-smooth objective function. Such
a problem is difficult to solve directly due to the non-smoothness
in the trace norm and the �1,2-norm regularization terms.

The proposed RMTL formulation in Eq. (4) subsumes several
representative algorithms as special cases. As β → +∞, RMTL is
degenerated into

min
L

m∑
i=1

ni∑
j=1

1

mni

(
lTi x

i
j − yi

j

)2
+ α‖L‖∗. (6)

The formulation in Eq. (6) is essentially the least squares regression
with trace norm regularization, in which multiple learning tasks are
coupled via a low-rank structure. On the other hand, as α → ∞,
RMTL is degenerated into

min
S

m∑
i=1

ni∑
j=1

1

mni

(
sTi x

i
j − yi

j

)2
+ β‖S‖1,2. (7)

The formulation in Eq. (7) is essentially a variant of the ridge re-
gression with the smooth term

∑m
i=1 ‖si‖2 replaced by the non-

smooth term
∑m

i=1 ‖si‖. In such a formulation, the multiple tasks
are decoupled and each task can be learned (optimized) via

min
si

1

mni

ni∑
j=1

(
sTi x

i
j − yi

j

)2
+ β‖si‖2.

Note that similar low-rank and group-sparse structures are studied
from a different perspective in [32, 12], which focus on decompos-
ing a given data matrix into a unique sum of a low-rank structure
and a column-sparse structure and providing a theoretical guarantee
for existence and uniqueness of the decomposition.

3. ACCELERATED PROXIMAL METHOD
In this section, we consider to solve the RMTL formulation in

Eq. (4) using the accelerated proximal method (APM) [4, 24, 25].
APM has attracted extensive attentions in the machine learning and
data mining communities [20, 19, 15, 8, 18, 21] due to its opti-
mal convergence rate among all first-order techniques and its abil-
ity of dealing with large-scale non-smooth optimization problems.
Note that in this paper, we focus on discussing the key ingredient
of APM, i.e, the proximal operator and its efficient computation;
the detailed description of APM can be found in [4, 24, 25].

3.1 Proximal Operator
For the optimization problem in Eq. (4), we symbolically denote

its variables by

Z =

[
L
S

]
, L ∈ R

d×m, S ∈ R
d×m,

and denote the smooth and non-smooth components of its objective
function respectively by

f(Z) = L
(
(li + si)

Txi
j , y

i
j

)
, g(Z) = α‖L‖∗+β‖S‖1,2. (8)



To solve Eq. (4), APM maintains two sequences of variables: a
feasible solution sequence {Zk} and a searching point sequence
{Ẑk}. The general scheme of APM can be described as below: at
the k-th iteration of APM, the solution point Zk+1 can be computed
via

Zk+1 = argmin
Z

γk
2

∥∥∥∥Z −
(
Ẑk − 1

γk
∇f(Ẑk)

)∥∥∥∥2
F

+g(Z), (9)

where Ẑk denotes a searching point constructed from a linear com-
bination of Zk and Zk−1 from previous iterations, and ∇f(Ẑk) de-
notes the derivative of the smooth component f(·) in Eq. (8) at Ẑk,
γk specifies the step size which can be appropriately determined by
iteratively increasing its value until the inequality

f(Zk+1)≤f(Ẑk)+ 〈∇f(Ẑk), Zk+1− Ẑk〉+ γk
2
‖Zk+1− Ẑk‖2F ,

(10)
is satisfied. The procedure in Eq. (9) is commonly referred to as the
proximal operator [23]. The efficient computation of the proximal
operator is critical for the practical convergence of APM, as it is
involved in each iteration of the APM algorithm.

3.2 Proximal Operator Computation
For the optimization problem in Eq. (4), its proximal operator

can be expressed as an optimization problem of the general form

min
Lz ,Sz

‖Lz − Lẑ‖2F + ‖Sz − Sẑ‖2F + α̂‖Lz‖∗ + β̂‖Sz‖1,2, (11)

where α̂ = 2α
γk

and β̂ = 2β
γk

. It can be easily verified that the
optimization of Lz and Sz in Eq. (11) are decoupled. Moreover, the
optimal solution to Eq. (11) admits an analytic form as presented
below.

Computation of Lz The optimal Lz to Eq. (11) can be obtained
by solving the following optimization problem:

min
Lz

‖Lz − Lẑ‖2F + α̂‖Lz‖∗. (12)

The computation procedure above is equal to the matrix shrinkage
operator discussed in [6, 11]. In essence it applies soft-thresholding
to the non-zero singular values [28] of Lẑ as summarized in the
following theorem.

THEOREM 3.1. Given an arbitrary Lẑ in Eq. (12), let rank(Lẑ) =
r and denote the singular value decomposition (SVD) of Lẑ in the
reduced form as

Lẑ = UẑΣẑV
T
ẑ , Σẑ = diag ({σi}ri=1)

where, Uẑ ∈ R
d×r and Vẑ ∈ R

m×r consist of orthonormal columns,
Σẑ ∈ R

r×r is diagonal, and {σi}ri=1 represent the non-zero sin-
gular values. Then the optimal L∗

z to Eq. (12) is given by

L∗
z = Uẑ diag

({
σi − 1

2
α̂

}
+

)
V T
ẑ ,

where {e}+ = max(e, 0).

The dominating cost in solving Eq. (12) lies in the compact SVD
operation on the matrix Lẑ ∈ R

d×m (m � d in general MTL
settings).

Computation of Sz The optimal Sz to Eq. (11) can be obtained by
solving the following optimization problem:

min
Sz

‖Sz − Sẑ‖2F + β̂‖Sz‖1,2. (13)

It can be easily verified that in Eq. (13) the column vectors of Sz

can be optimized separately. Specifically, each vector of the opti-
mal Sz to Eq. (13) can be obtained via solving a subproblem in the
form

min
s

‖s− ŝ‖22 + β̂‖s‖2. (14)

It can be verified that the optimization problem above admits an
analytic solution [19] as summarized in the following lemma.

LEMMA 3.1. Let s∗ be the optimal solution to the optimization
problem in Eq. (14). Then s∗ is given by

s∗ =

{
ŝ
(
1− β̂

2‖ŝ‖2

)
‖ŝ‖2 > β̂

2

0 0 ≤ ‖ŝ‖2 ≤ β̂
2

.

The computation cost of solving Eq. (13) is relatively small com-
pared to the cost of solving Eq. (12).

4. THEORETICAL ANALYSIS
In this section, we derive a performance bound for the proposed

RMTL formulation in Eq. (4). This performance bound can be used
to theoretically evaluate how well the integration of the low-rank
structure and the group-sparse structure can estimate the multiple
tasks (the ground truth of the linear predictive functions). Note that
in the following analysis, for simplicity we assume that the training
sample sizes for all tasks are the same; the derivation below can
be easily extended to the setting where the training sample size for
each task is different.

Assume that the linear predictive function associated with the
i-th task satisfies

yi
j = fi(x

i
j) + δij = wT

i x
i
j + δij , i ∈ Nm, j ∈ Nn, (15)

where {(xi
j , y

i
j)} are the training data pairs of the i-th task, and

δij ∼ N (0, σ2
δ ) is a stochastic noise variable. For the i-th task, de-

note its training data matrix Xi and its label vector yi respectively
by

Xi = [xi
1, · · · , xi

n] ∈ R
d×n, yi = [yi

1, · · · , yi
n]

T ∈ R
n, i ∈ Nm.

(16)
Denote the empirical evaluation of the i-th task fi over the training
data {xi

j} and the associated noise vector δi respectively by

f̂i = [fi(x
i
1), · · · , fi(xi

n)]
T ∈ R

n, δi = [δi1, · · · , δin]T ∈ R
n.

(17)
It follows that Eq. (15) can be expressed in a compact form as

yi = f̂i + δi, i ∈ Nm. (18)

Moreover, the optimization problem in Eq. (4) can be rewritten as

(L̂z, Ŝz)

= argmin
L,S

1

mn

m∑
i=1

‖XT
i (li+si)−yi‖22+α‖L‖∗+β‖S‖1,2, (19)

where L̂z = [l̂1, · · · , l̂m] and Ŝz = [ŝ1, · · · , ŝm] are the optimal
solution pair obtained via solving Eq. (19).

4.1 Basic Properties of the Optimal Solution
We present some basic properties of the optimal solution pair

defined in Eq. (19); these properties are important building blocks
for our following theoretical analysis. We first define two operators,
namely Q and its complement Q⊥, on an arbitrary matrix pair (of
the same size), based on Lemma 3.4 in [28].



LEMMA 4.1. Given any L and L̂ of the same size d × m, let
rank(L) = r ≤ min(d,m) and denote the SVD of L as

L = U

[
Σ 0
0 0

]
V T ,

where U ∈ R
d×d and V ∈ R

m×m are orthogonal, and Σ ∈ R
r×r

is diagonal consisting of the non-zero singular values on its main
diagonal. Let

UT (L̂− L)V =

[
M11 M12

M21 M22

]
,

where M11 ∈ R
r×r , M12 ∈ R

r×(m−r), M21 ∈ R
(d−r)×r, and

M22 ∈ R
(d−r)×(m−r). Define Q and Q⊥ on L̂− L as

Q(L̂−L) =U

[
M11 M12

M21 0

]
V T ,Q⊥(L̂−L) =U

[
0 0
0 M22

]
V T .

Then rank(Q(L̂−L)) ≤ 2r, LQT
⊥(L̂−L) = LTQ⊥(L̂−L) = 0.

The results in Lemma 4.1 imply a condition under which the trace
norm on a matrix pair is additive. From Lemma 4.1 we can verify

‖L+Q⊥(L̂− L)‖∗ = ‖L‖∗ + ‖Q⊥(L̂− L)‖∗, (20)

for arbitrary L and L̂ of the same size. As a direct consequence of
Lemma 4.1, we derive a bound on the trace norm of the matrices of
interest as summarized below (the detailed proof is provided in the
Appendix).

COROLLARY 4.1. For an arbitrary matrix pair L̂ and L, the
following inequality holds

‖L̂− L‖∗ + ‖L‖∗ − ‖L̂‖∗ ≤ 2‖Q(L̂− L)‖∗.
Analogous to the bound on the trace norm derived in Corollary 4.1,
we derive a bound on the �1,2-norm of the matrices of interest.
Denote by C(S) the set of indices corresponding to the non-zero
columns of the matrix S as

C(S) = {i : si �= 0, i ∈ Nm} , (21)

and by C⊥(S) the associated complement (the set of indices corre-
sponding to the zero columns). Denote by ŜC(S) the matrix of the

same columns as Ŝ on the index set C(S) and of zero columns on
the index set C⊥(S), i.e., ŜC(S) = [s̃1, · · · , s̃m], where s̃i = ŝi
if i ∈ C(S) and s̃i = 0 if i ∈ C⊥(S). The bound on the �1,2-
norm is summarized below (the detailed proof is provided in the
Appendix).

LEMMA 4.2. Given a matrix pair S and Ŝ of the same size, the
following inequality holds

‖Ŝ − S‖1,2 + ‖S‖1,2 − ‖Ŝ‖1,2 ≤ 2‖(Ŝ − S)C(S)‖1,2. (22)

We now present some important properties of the optimal solution
in Eq. (19) as summarized in the following lemma.

LEMMA 4.3. Consider the optimization problem in Eq. (19) for
m ≥ 2 and n, d ≥ 1. Let Xi and yi be defined in Eq. (16), and
f̂i and δi be defined in Eq. (17). Assume that all diagonal elements
of the matrix XiX

T
i are equal to 1 (features are normalized). Take

the regularization parameters α and β as

α√
m

,β ≥ λ, λ =
2σδ

nm

√
d+ t, (23)

where t > 0 is a universal constant. Then with probability of at
least 1−m exp

(− 1
2

(
t− d log

(
1 + t

d

)))
, for a global minimizer

L̂z, Ŝz in Eq. (19) and any L, S ∈ R
d×m, we have

1

nm

m∑
i=1

‖XT
i (l̂i + ŝi)− f̂i‖22 ≤ 1

nm

m∑
i=1

‖XT
i (li + si)− f̂i‖22

+ α‖Q(L̂z − L)‖+ β‖(Ŝz − S)C(S)‖1,2, (24)

where l̂i and ŝi (li and si) are the i-th columns of L̂z and Ŝz (L
and S), respectively.

PROOF. From the definition of (L̂z, Ŝz) in Eq. (19), we have

1

nm

m∑
i=1

‖XT
i (l̂i + ŝi)− yi‖22 ≤ 1

nm

m∑
i=1

‖XT
i (li + si)− yi‖22

α‖L‖∗ + β‖S‖1,2 − α‖L̂z‖∗ − β‖Ŝz‖1,2.
By substituting Eq. (18) into the inequality above and rearranging
all terms, we have

1

nm

m∑
i=1

‖XT
i (l̂i + ŝi)− f̂i‖22 ≤ 1

nm

m∑
i=1

‖XT
i (li + si)− f̂i‖22

+α(‖L‖∗ −‖L̂z‖∗) + β(‖S‖1,2 −‖Ŝz‖1,2)

+
2

nm

m∑
i=1

〈l̂i − li, Xiδi〉+ 2

nm

m∑
i=1

〈ŝi − si, Xiδi〉. (25)

Next we compute upper bounds for the terms 2
nm

∑m
i=1〈l̂i−li, Xiδi〉

and 2
nm

∑m
i=1〈ŝi−si, Xiδi〉 in Eq. (25), respectively. Define a set

of random events {Ai} as

Ai =

{
2

nm
‖Xiδi‖2 ≤ λ

}
, ∀i ∈ Nm.

For each Ai, define a set of random variables {vij} as

vij =
1

σδ

n∑
k=1

xi
jkδik, j ∈ Nd,

where xi
jk denotes the (j, k)-th entry of the data matrix Xi. Since

all diagonal elements of the matrix XiX
T
i are equal to 1, it can be

shown that {vi1, vi2, · · · , vid} are i.i.d. Gaussian variables obey-
ing N (0, 1) (Lemma 1 in the Appendix). We can also verify that∑d

j=1 v
2
ij is a chi-squared random variable with d degrees of free-

dom. Moreover taking λ as in Eq. (23), we have

Pr

(
2

nm
‖Xiδi‖2 > λ

)
= Pr

(
d∑

j=1

(
n∑

k=1

xi
jkδik

)2

≥ λ2n2m2

4

)

= Pr

(
d∑

j=1

v2ij ≥ d+ t

)
≤ exp

(
−1

2
μ2
d(t)

)
,

where μd(t) =
√

t− d log
(
1 + t

d

)
(t > 0), and the last inequal-

ity above follows from a concentration inequality (Lemma 2 in the
Appendix). Let A =

⋂m
i=1 Ai. Denote by Ac

i the complement of
each event Ai. It follows that

Pr (A) ≥ 1− Pr

(
m⋃
i=1

Ac
i

)
≥ 1−m exp

(
−1

2
μ2
d(t)

)
.



Under the event A, we derive a bound on the term 2
nm

∑m
i=1〈l̂i −

li, Xiδi〉 as

2

nm

m∑
i=1

〈l̂i − li, Xiδi〉 ≤ 2

nm

m∑
i=1

‖l̂i − li‖2‖Xiδi‖2

≤ λ

m∑
i=1

‖l̂i − li‖2 ≤ α‖L̂z − L‖∗, (26)

where the first inequality above follows from Cauchy-Schwarz in-
equality and the second inequality follows from

m∑
i=1

‖l̂i − li‖2 ≤
√√√√m

m∑
i=1

‖l̂i − li‖22

=
√
m‖L̂z − L‖F ≤ √

m‖L̂z − L‖∗.
Similarly underA, we also derive a bound on the term 2

nm

∑m
i=1〈ŝi−

si, Xifi〉 as

2

nm

m∑
i=1

〈ŝi − si, Xiδi〉 ≤ 2

nm

m∑
i=1

‖ŝi − si‖2‖Xiδi‖2

≤ β‖Ŝz − S‖1,2. (27)

Moreover we bound the right side of Eq.( 25) using the results from
Eqs. (26) and (27). It follows that

1

nm

m∑
i=1

‖XT
i (l̂i+ŝi)−f̂i‖22 ≤ 1

nm

m∑
i=1

‖XT
i (li+si)−f̂i‖22+

α(‖L̂z−L‖∗+‖L‖∗−‖L̂z‖∗)+β(‖Ŝz−S‖1,2+‖S‖1,2−‖Ŝz‖1,2).
Finally by applying Corollary 4.1 and Lemma 4.2 together with the
inequality above, we complete the proof.

4.2 Performance Bound
We present a performance bound of the proposed RMTL formu-

lation in Eq. (19). This bound measures how well the multi-task
learning scheme (via the integration of the low-rank structure and
the �1,2-norm structure) can estimate the linear predictive functions
in Eq. (15).

We begin with some notations. Let X ∈ R
md×mn be a block-

diagonal matrix with its i-th block formed by the matrix Xi ∈
R

d×n (i ∈ Nm). Define a diagonalization operator D on an ar-
bitrary Ω = [ω1, ω2, · · · , ωm] ∈ R

d×m: D(Ω) ∈ R
md×m is a

block diagonal matrix with its i-th block formed by the column
vector ωi ∈ R

d. Let F = [f̂1, · · · , f̂m], where f̂i is defined in
Eq. (17). Therefore we can rewrite Eq. (24) in a compact form as

1

T
‖XTD(L̂z+Ŝz)−D(F)‖2F ≤ 1

T
‖XTD(L+S)−D(F)‖2F

+ α‖Q(L̂z − L)‖∗ + β‖(Ŝz − S)C(S)‖1,2, (28)

where T = nm. We next introduce our assumption over a re-
stricted set. The assumption is associated with training data X and
the geometric structure of the matrices of interest.

ASSUMPTION 4.1. For a matrix pair ΓL and ΓS of size d by
m, let s ≤ min(d,m) and q ≤ m. We assume that there exist
constants κ1(s) and κ2(q) such that

κ1(s) � min
ΓL,ΓS∈R(s,q)

‖XD(ΓL + ΓS)‖F√
T‖Q(ΓL)‖∗

> 0, (29)

κ2(q) � min
ΓL,ΓS∈R(s,q)

‖XD(ΓL + ΓS)‖F√
T‖(ΓS)C(S)‖1,2

> 0, (30)

where the restricted set R(s, q) is defined as

R(s, q) =
{
ΓL,ΓS ∈ R

d×m |ΓL �= 0, ΓS �= 0,

rank(Q(ΓL)) ≤ s, |C(ΓS)| ≤ q} ,

and C(·) is defined in Eq. (21), and |Ĉ| denotes the number of ele-
ments in the set Ĉ.

The assumption in Eqs. (29) and (30) can be implied by several
sufficient conditions as in [5]. Due to the space constraint, the de-
tails are omitted. Note that similar assumptions are used in [22]
for deriving a certain performance bound for a different multi-task
learning formulation.

We present the performance bound of the RMTL formulation in
the following theorem.

THEOREM 4.1. Consider the optimization problem in Eq. (19)
for m ≥ 2 and n, d ≥ 1. Take the regularization parameters
α and β as in Eq. (23). Then with probability of at least 1 −
m exp

(− 1
2

(
t− d log

(
1 + t

d

)))
, for a global minimizer L̂z, Ŝz

in Eq. (19), we have

1

T
‖XD(L̂z+Ŝz)−D(F)‖2F ≤ (1+ε) inf

L,S

1

T
‖XD(L+S)−D(F)‖2F

+ E(ε)
(

α2

κ2
1(2r)

+
β2

κ2
2(c)

)
, (31)

where inf is taken over all L, S ∈ R
d×m with rank(L) ≤ r and

|C(S)| ≤ c, and E(ε) > 0 is a constant depending only on ε.

PROOF. Denote ΓL = L̂z − L and ΓS = Ŝz − S. It follows
from Eq. (28) that

1

T
‖XTD(L̂z+Ŝz)−D(F)‖2F ≤ 1

T
‖XTD(L+S)−D(F)‖2F

+ α‖Q(ΓL)‖∗ + β‖(ΓS)C(S)‖1,2. (32)

Given Q(ΓL) ≤ 2r (from Lemma 4.1) and |C(S)| ≤ c, we de-
rive upper bounds on α‖Q(ΓL)‖∗ and β‖(ΓS)C(S))‖1,2 over the
restrict set R(2r, c) based on Assumptions 4.1, respectively. It fol-
lows from Eq. (29) in Assumption 4.1 that

2α‖Q(ΓL)‖∗ ≤ 2α

κ1(2r)
√
T
‖XD(ΓL+ΓS)‖F ≤ 2α

κ1(2r)
√
T(

‖XD(L̂z + Ŝz)−D(F)‖F + ‖XD(L+ S)−D(F)‖F
)
≤

α2τ

κ2
1(2r)

+
1

τT
‖XD(L̂z + Ŝz)−D(F)‖2F +

α2τ

κ2
1(2r)

+

1

τT
‖XD(L+ S)−D(F)‖2F , (33)

where the last inequality above follows from 2ab ≤ a2τ + b2 1
τ

for
τ > 0. Similarly, we have

2β‖(ΓS)C(S)‖1,2 ≤ β2τ

κ2
2(c)

+
1

τT
‖XD(L̂z + Ŝz)−D(F)‖2F +

β2τ

κ2
2(c)

+
1

τT
‖XD(L+ S)−D(F)‖2F . (34)

Substituting Eqs. (33) and (34) into Eq. (32) and setting τ = 2+ 4
ε
,



we obtain

1

T
‖XD(L̂z + Ŝz)−D(F)‖2F

≤ τ + 2

τ − 2
‖XD(L+ S)−D(F)‖2F +

2τ2

τ − 2

(
α2

κ2
1(2r)

+
β2

κ2
2(c)

)
= (1 + ε)‖XD(L+ S)−D(F)‖2F + E(ε)

(
α2

κ2
1(2r)

+
β2

κ2
2(c)

)
,

where E(ε) = ε( 1
2
+ 1

ε
)2. This completes the proof.

The performance bound described in Eq. (31) can be refined by
choosing specific values for the regularization parameters α and β:

it can be verified that the component α2

κ2
1(2r)

+ β2

κ2
2(c)

is minimized

if α and β are chosen to be proportional to κ2
1(2r) and κ2

2(c), re-
spectively.

5. EXPERIMENTS
In this section, we evaluate the proposed RMTL formulation

in Eq. (4) in comparison with other representative algorithms for
multi-task learning; we also conduct numerical studies on the APM
algorithm in comparison with the commonly used proximal method
(PM) [25, 24] for solving RMTL. All algorithms are implemented
in Matlab. Note that for numerical accuracy consideration, we
solve the RMLT formulation with its objective function multiplied
by nm, where m and n correspond to the task number and the sum
of the sample sizes for all tasks, respectively.
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Figure 1: Demonstration of the extracted low-rank and group
structures: the left plot shows the singular values of the low-
rank component L (the last 18 singular values are zero); the
right plot demonstrates the structure of the group-sparse com-
ponent S (the first 20 columns are zero-vectors). In the right
plot the grey area corresponds to the pixels of zero-value.

5.1 Demonstration of Extracted Structures
We apply the RMTL algorithm on a synthetic data set and then

demonstrate the extracted low-rank and group-sparse structures.
The synthetic data is constructed as follows: set the task number
m = 30, the size of the training samples for each task ni = 50,
and the feature dimensionality of the training samples d = 60;
generate the entries of the training data Xi ∈ R

d×ni (for the i-th
task) randomly from the distribution N (0, 25); generate the en-
tries in the low-rank component L (of size d ×m) randomly from
N (0, 16) and then set its smallest 20 singular values at 0; gener-
ate the entries in the group-sparse component S (of size d × m)
randomly from N (0, 20) and then set its first 20 columns as zero-
vectors; construct the response (target) vector of each task as yi =
XT

i (L+ S) + δi ∈ R
ni (i ∈ Nm), where each entry in the vector

δi is randomly generated from N (0, 1). Under this experimental
setting, we construct 20 related tasks as well as 10 outlier tasks,
where each task is associated with 50 training samples of feature
dimensionality 60.

In Figure 1, we present the low-rank component L and the group-
sparse component S obtained by solving RMTL with α = 50 and
β = 10. From the left plot of Figure 1, we can observe that the ma-
trix L (of size 60× 50) has 12 non-zero singular values; this result
is consistent with our problem setting of using a low-rank structure
to capture the tasks relationship. From the right plot of Figure 1, we
can observe that the first 20 columns (corresponding to the related
tasks) in S are zero vectors, while the last 10 columns (correspond-
ing to the outlier tasks) are non-zero vectors. The results in Figure 1
empirically demonstrate the effectiveness of RMTL.

5.2 Performance Evaluation of RMTL
We evaluate the RMTL algorithm on multi-task regression prob-

lems in comparison with other representative algorithms includ-
ing ridge regression (Ridge), least squares with �1-norm regular-
ization (Lasso), least squares with trace norm regularization (Tra-
ceNorm), least squares with low-rank and sparse structures regular-
ization (Sparse-LowRank) [8], and convex multi-task feature learn-
ing (CMTL) [2]. The normalized mean squared error (nMSE) and
the averaged mean squared error (aMSE) are employed as the re-
gression performance measures as used in previous studies [2, 38].
Note that nMSE is defined as the mean squared error (MSE) di-
vided by the variance of the target vector; aMSE is defined as MSE
divided by the squared norm of the target vector. We adopt APM to
solve RMTL and terminate APM when the relative change of the
objective values in two successive iterations is smaller than 10−5.
We use the School data1 and the SARCOS data2 for the experi-
ments.

The School data consists of the exam scores of 15362 students
from 139 secondary schools; each student is described by 27 at-
tributes such as gender and ethnic group. The exam score predic-
tion of the students can be cast into a multi-task regression (learn-
ing) problem: we are given 139 tasks (schools), where each task
has a different number of samples (students) and each sample has
27 features (attributes). We randomly select 10%, 20%, and 30%
of the samples (from each task) to form the training set and use the
rest of the samples as the test set. The experimental results aver-
aged over 15 random repetitions are presented in Table 1. From the
presented results, we have the following observations: (1) RMTL
outperforms all other competing algorithms in terms of nMSE and
aMSE; (2) the multi-task learning algorithms (TraceNorm, Sparse-
LowRank, CMTL, and RMTL) outperform the single-task learning
algorithms (Ridge and Lasso) in terms of both nMSE and aMSE;
(3) the performance of CMTL is similar to that of TraceNorm; this
result may be due to the use of similar penalty terms in CMTL and
TraceNorm.

The SARCOS data is collected for an inverse dynamics pre-
diction problem for a seven degrees-of-freedom anthropomorphic
robot arm. This data consists of 48933 observations correspond-
ing to 7 joint torques; each of the observations is described by 21
features including 7 joint positions, 7 joint velocities, and 7 joint
accelerations. Our goal is to construct mappings from each obser-
vation to 7 joint torques. We randomly select 50, 100, 150 observa-
tions to form 3 training sets and accordingly randomly select 5000
observations to form 3 test sets. The experimental results averaged
over 15 random repetitions are presented in Table 2. From the ex-
perimental results, we have the following observations: (1) RMTL
performs better than or compares competitively to all other com-
peting algorithms in terms of both nMSE and aMSE; (2) the multi-
task learning algorithms (TraceNorm, Sparse-LowRank, CMTL,

1http://www.cs.ucl.ac.uk/staff/A.Argyriou/code/
2http://www.gaussianprocess.org/gpml/data/



Table 1: Performance comparison of the six competing algorithms in terms of the normalized MSE (nMSE) and the averaged MSE
(aMSE) with standard deviation using the School data. All parameters of the six methods are determined via cross-validation and the
reported regression performance is averaged over 15 random repetitions. Note that a smaller value of nMSE and aMSE represents
better regression performance.

Measure training ratio Ridge Lasso TraceNorm Sparse-LowRank CMTL Robust MTL

10% 1.0398± 0.0038 1.0261± 0.0132 0.9359± 0.0370 0.9175± 0.0261 0.9413± 0.0021 0.9130± 0.0039
nMSE 20% 0.8773± 0.0043 0.8754± 0.0194 0.8211± 0.0032 0.8126± 0.0132 0.8327± 0.0039 0.8055± 0.0103

30% 0.8171± 0.0090 0.8144± 0.0091 0.7870± 0.0012 0.7657± 0.0091 0.7922± 0.0052 0.7600± 0.0032

10% 0.2713± 0.0023 0.2682± 0.0036 0.2504± 0.0102 0.2419± 0.0081 0.2552± 0.0032 0.2330± 0.0018
aMSE 20% 0.2303± 0.0003 0.2289± 0.0051 0.2156± 0.0015 0.2114± 0.0041 0.2131± 0.0071 0.2018± 0.0025

30% 0.2165± 0.0021 0.2137± 0.0012 0.2089± 0.0012 0.2011± 0.0022 0.1922± 0.0102 0.1822± 0.0014

Table 2: Performance comparison of the six competing algorithms in terms of nMSE and aMSE with standard deviation using the
SARCOS data.The experimental setting is similar to the one described in Table 1.

Measure training size Ridge Lasso TraceNorm Sparse-LowRank CMTL Robust MTL

50 0.2454± 0.0260 0.2337± 0.0180 0.2257± 0.0065 0.2127± 0.0033 0.2192± 0.0016 0.2123± 0.0038
nMSE 100 0.1821± 0.0142 0.1616± 0.0027 0.1531± 0.0017 0.1495± 0.0023 0.1568± 0.0037 0.1456± 0.0138

150 0.1501± 0.0054 0.1469± 0.0028 0.1318± 0.0053 0.1236± 0.0004 0.1301± 0.0034 0.1245± 0.0015

50 0.1330± 0.0143 0.1228± 0.0083 0.1122± 0.0064 0.1073± 0.0026 0.1156± 0.0011 0.0982± 0.0026
aMSE 100 0.1053± 0.0096 0.0907± 0.0023 0.0805± 0.0026 0.0793± 0.0047 0.0852± 0.0013 0.0737± 0.0083

150 0.0846± 0.0045 0.0822± 0.0014 0.0772± 0.0023 0.0661± 0.0062 0.0755± 0.0025 0.0674± 0.0014

and RMTL) outperform the single-task learning algorithms (Ridge
and Lasso) in terms of both nMSE and aMSE. We also observe that
Sparse-LowRank has a similar performance to RMTL. In Sparse-
LowRank, incoherent low-rank and (�1-norm based) sparse struc-
tures [8] are used to capture the task relatedness as well as iden-
tify discriminative features for each task. These results imply that
allowing each task to independently select discriminative features
may improve the robustness of the algorithm.

5.3 Sensitivity Studies on RMTL
We conduct a sensitivity study on the proposed RMTL formu-

lation. In particular, we study how the regularization parameters
and the training sample size affect the regression performance of
RMTL in terms of nMSE and aMSE, respectively.

Effect of the Regularization Parameters For this experiment, we
randomly select 10% of the School data as the training set and use
the rest of the data as the test set. By fixing β = 100 as well as
varying the value of α in α-value set, i.e., [50 : 50 : 500], we study
how the parameter α affects the regression performance of RMTL.
Similarly, by fixing α = 150 as well as varying the value of β in
β-value set of [20 : 5 : 115], we study how the parameter β affects
the regression performance of RMTL. In Figure 2, we present the
regression performance (averaged over 15 random repetitions) of
RMTL in terms of nMSE (1st and 3rd plots) and aMSE (2nd and
4th plots) for each pair of (α, β). From Figure 2, we can observe
that both nMSE and aMSE change with different settings of (α, β);
we can also observe that the best performance of RMTL for a fixed
α (or a fixed β) is obtained by setting β in the middle of β-value
set (or setting the value of α in the middle of α-value set).

Effect of the Training Ratio For this experiment, we randomly
select {10%, 20%, · · · , 80%} of the School data as the training
set and use the rest of the data as the test set. We study how the
the training sample size (in terms of the training ratio) affects the
regression performance of RMTL. Note that the regularization pa-
rameters α and β are determined via double cross-validation. The
experimental results are presented in Figure 3. We can observe
that by increasing the training ratio, both the nMSE and aMSE de-

crease; this result is consist with our expectation that more training
data will lead to more accurate predictive model and hence better
generalization performance.

5.4 Numerical Studies on APM
We conduct numerical studies on APM in comparison with PM

for solving RMTL in terms of the computation time (in seconds)
and the iteration number. We randomly select 10% of the School
data for the following experiments. The experimental setting is de-
scribed as follows: we stop PM when the change of the objective
value in two successive iterations is smaller than 10−i and record
the attained objective value; such a value is then used as the stop-
ping criterion in APM, that is, we stop APM when the attained
objective value in APM is equal to or smaller than the one previ-
ously obtained from PM; we vary the stopping criterion of PM in
the set {10−i}6i=1 and record the required computation time and
iteration number for both PM and APM. From the experimental
results presented in Figure 4, we have the following observations:
(1) APM requires less computation time and iteration number than
PM for attaining the same objective value; (2) both APM and PM
require more computation time and a larger iteration number if the
stopping criterion is set as a smaller value (higher accuracy).

6. CONCLUSION
In this paper, we propose a robust multi-task learning (RMTL)

algorithm which learns multiple tasks simultaneously as well as
identifies the outlier tasks. The proposed RMTL algorithm cap-
tures the task relationships using a low-rank structure, and simulta-
neously identifies the outlier tasks using a group-sparse structure.
RMTL is formulated as a non-smooth convex (unconstrained) op-
timization problem in which the least square loss is regularized
by a combination of the trace norm regularization and the �1,2-
norm regularization. We propose to adopt the accelerated proximal
method (APM) for solving this optimization problem and develop
efficient algorithms for computing the associated proximal opera-
tor. We also conduct a theoretical analysis on the proposed RMTL
formulation. In particular, we derive a key property of the opti-
mal solution to RMTL; based on the key property, we establish
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Figure 2: Sensitivity study on RMTL: study the effect of the parameters α and β in terms of nMSE (1st and 3rd plots) and aMSE
(2nd and 4th plots), respectively. For the first two plots, we set β = 100 and vary α in the α-value set [50 : 50 : 500]; for the last two
plots, we set β = 150 and vary β in the β-value set [20 : 5 : 115].

a theoretical performance bound to characterize the learning per-
formance of RMTL. Our experimental results on benchmark data
sets demonstrate the effectiveness and efficiency of the proposed
algorithms. In the future, we plan to apply the proposed RMTL to
other real world applications such as Alzheimer’s disease study and
Drosophila gene expression images analysis.
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APPENDIX
Proof of Corollary 4.1

PROOF. From Lemma 4.1, we have

L̂− L = Q(L̂− L) +Q⊥(L̂− L)

for any matrix pair L and L̂. It follows that

‖L̂‖∗ = ‖L+Q(L̂− L) +Q⊥(L̂− L)‖∗
≥ ‖L+Q⊥(L̂− L)‖∗ − ‖Q(L̂− L)‖∗
= ‖L‖∗ + ‖Q⊥(L̂− L)‖∗ − ‖Q(L̂− L)‖∗,

where the inequality above follows from the triangle inequality and
the last equality above follows from Eq. (20). Moreover,

‖L̂− L‖∗ + ‖L‖∗−‖L̂‖∗
≤‖L̂− L‖∗ + ‖L‖∗−

(
‖L‖∗+‖Q⊥(L̂− L)‖∗−‖Q(L̂− L)‖∗

)
≤ 2‖Q(L̂− L)‖∗.
We complete the proof of this corollary.

Proof of Lemma 4.2

PROOF. From the definition of C(S) in Eq. (21), we have

SC⊥(S) = 0, ‖(Ŝ − S)C⊥(S)‖1,2 = ‖ŜC⊥(S)‖1,2.
It follows that

‖(Ŝ − S)C⊥(S)‖1,2 + ‖S‖1,2 − ‖Ŝ‖1,2
= ‖ŜC⊥(S)‖1,2 + ‖S‖1,2 − ‖Ŝ‖1,2
= ‖SC(S)‖1,2 − ‖ŜC(S)‖1,2
≤ ‖(S − Ŝ)C(S)‖1,2 = ‖(Ŝ − S)C(S)‖1,2.

By substituting the equation above into the left side of Eq. (22), we
complete the proof of this lemma.

LEMMA 1. Let δ1, δ2, · · · , δn be a random sample of size n
from the Gaussian distribution N (0, σ). Let x1, x2, · · · , xn satisfy
x2
1 + x2

2 + · · ·+ x2
n = 1. Denote a random variable v as

v =
1

σ

n∑
i=1

xiδi.

Then v obeys the Gaussian distribution N (0, 1).

PROOF. Since {δi} are mutually independent, the mean of the
random variable v can be computed as

E(v) = E

(
1

σ

n∑
i=1

xiδi

)
=

1

σ

n∑
i=1

xiE (δi) = 0.

Similarly, the variance of v can be computed

E (v − E(v))2 = E

(
1

σ2

n∑
i=1

x2
i δ

2
i

)
=

1

σ2

n∑
i=1

x2
iE
(
δ2i
)
= 1,



where the first equality follows from E (δiδj) = 0 (i �= j). Us-
ing the fact that the sum of Gaussian random variables is Gaussian
distributed, we complete the proof of this lemma.

LEMMA 2. Let X 2
p be a chi-squared random variable with p

degrees of freedom. Then

Pr
(X 2

p ≥ p+ π
) ≤ exp

(
−1

2

(
π − p log

(
1 +

π

p

)))
, π > 0.

PROOF. From Theorem 4.1 in [31], we approximate the chi-
square distribution using a normal distribution as

Pr
(X 2

p ≥ q
) ≤ Pr (N0,1 ≥ zp(q)) , q > p,

where N0,1 ∼ N (0, 1) and zp(q) =

√
q − p− p log

(
q
p

)
. It is

known that for x ∼ N (0, 1), the inequalityPr (x ≥ t) ≤ exp(− t2

2
)

holds. Therefore we have

Pr
(X 2

p ≥ q
) ≤ exp

(
−1

2
z2p(q)

)
.

By substituting q = p + π (π > 0) into the inequality above, we
complete the proof of this lemma.
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