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Road Map

* Introduction to Sparsity

* Convex Approaches
 Non-Convex Approaches
* Topic: Matrix Completion
* Topic: Multi-task Learning
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Dimensionality Reduction

* Dimensionality reduction algorithms

— Feature Extraction
— Feature Selection

features new features
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SIAM Data Mining 2007 Tutorial (Yu, Ye, and Liu):

“Dimensionality Reduction for Data Mining - Techniques, Applications, and Trends”

5 MICHIGAN STATE UNIVERSITY



Sparse Learning

* \WWe focus on sparse learning in this tutorial

— Embed dimensionality reduction into data
mining tasks

— Flexible models for complex feature structures
— Strong theoretical guarantee

— Empirical success in many applications

— Recent progress on efficient implementations

6 MICHIGAN STATE UNIVERSITY



What is Sparsity

 Many data miningtasks can be represented using a vector or
a matrix.

e “Sparsity” implies many zeros in a vector or a matrix.
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Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt van Rijn, 1632.
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Biomedical Imaging

X-Ray,1895

1 901 NObeI Prize in Hand d:s‘ ‘A.n‘nmm.enGd‘l.cmumhvon ’Kn\ll'»;cr
PhySiCS von I‘?;ol:-;:":“l;r ;N’C Hi’(‘u‘r:‘!‘("'
Wilhelm Rontgen's
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Biomedical Imaging

Computed Tomography
(CT), 1967

X-Ray,1895

1901 Nobel Prize in 1979 Nobel Prize in

Physics Physiology or Medicine
Wilhelm Rontgen's Allan M. Cormack and

Godfrey N. Hounsfield
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Biomedical Imaging

11

X-Ray,1895

1901 Nobel Prize in
Physics
Wilhelm Rontgen's

Computed Tomography Magnetic Resonance
(CT), 1967 Imaging (MRI), 1971

—~J

1979 Nobel Prize in 2003 Nobel Prize in
Physiology or Medicine Physiology or Medicine
Allan M. Cormack and Paul Lauterbur and Sir
Godfrey N. Hounsfield Peter Mansfield
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Magnetic Resonance Imaging (cont.)

« Acquire a digital object x € R? fromn
measurements:

y,-=<x,go,~>,i: 1727”‘7”

— Waveforms i : Sinusoids
 y is a vector of Fourier coefficients (e.g., MRI)

« Recover the object from the measurements
— Sovling a linear system of equations
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Magnetic Resonance Imaging (cont.)
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Compressive Sensing

* |s accurate reconstruction possible from
n<<p measurements only?
— Few sensors
— Measurements are very expensive
— Sensing process is slow
— Save lives
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Motivation: Signal Acquisition

 Conventional wisdom: reconstruction is
Impossible
— Number of measurements must match the number of

unknowns N

90179027”'79012

n X 1 measurements

If n<<p, the system is underdetermined. px1 signal
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Generalization: Signal Acquisition

* Wish to acquire a digital object x ¢ R? from n
measurements:

y,-=<x,go,~>,i: 1727”‘7”

« Waveforms ¥i

— Dirac delta functions (spikes)

 yis a vector of sampled values of x in the time or space
domain

— Indicator functions of pixels
« yisthe image data typically collected by sensors in a digital camera

— Sinusoids
 yis a vector of Fourier coefficients (e.g., MRI)
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Motivation: Signal Acquisition (cont.)

 Many natural signals are sparse or compressible
In the sense that they have concise

representations when expressed in the proper

4 Wavelet Coefficients
x 10

Megapixel image represented as 2.5% largest wavelet coefficients

(Candes and Wakin, 2008)
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MRI by Compressive Sensing
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Sparsity

* Dominant modeling tool
— Genomics
— Genetics
— Signal and audio processing
— Image processing
— Neuroscience (theory of sparse coding)
— Machine learning
— Data mining

70 MICHIGAN STATE UNIVERSITY



Sparsity in Data Mining

* Regression, classification, collaborative
filtering...

X
= [o1;¢2; -]
Label Data Matrix
(Design Matrix)
Model

21 MICHIGAN STATE UNIVERSITY



Road Map

* Introduction to Sparsity

« Convex Approaches
 Non-Convex Approaches
* Topic: Matrix Completion
* Topic: Multi-task Learning
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Convex Sparse Learning Models

* Let x be the model parameter to be estimated. A
commonly employed model for estimating x is

min loss(x) + Axpenalty(x) (1)
* (1) is equivalent to the following model:

min loss(x)
s.t. penalty(x) < z (2)

23 MICHIGAN STATE UNIVERSITY



Convex Sparse Learning Models

* Let x be the model parameter to be estimated. A
commonly employed model for estimating x is

min loss(x) + Axpenalty(x) (1)

— Sparsity via L,

— Sparsity via L4/L,

— Sparsity via Fused Lasso

— Sparse Inverse Covariance Estimation
— Sparsity via Trace Norm
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The L, Norm Penalty

25

min loss(x) + A [|x]]o

min loss(x) + A |[x]|
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The L, Norm Penalty

* penalty (x)=[|x]]1=2xi

26

min loss(x) + A [|x]]o

— Valid norm
— Convex

— Computationally tractable | min loss(x) + A [|x]],

— Sparsity induced norm
— Theoretical properties
— Various Extensions

MICHIGAN STATE UNIVERSITY



Why does L, Induce Sparsity?

Analysis in 1D (comparison with L,)

| \ | /
0.5 X (x-v)* + AJx| 0.5 X (x-v)* +Ax?
I[fv>A, x=v-A x=v/(1+2 A)
If v< -A, x=vtA
Else, x=0
Nondifferentiable at 0 Differentiable at 0
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Why does L, Induce Sparsity?

* Understanding from the projection

min loss(x)  min 0.5]|x-v||? min loss(x) min 0.5]|x-v/|[?
s.t.[x|ls =1 s.t ||| =1 s.t. [|X]|], =1 s.t. ||x|], =1
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Why does L, Induce Sparsity?

« Understanding from constrained optimization

w9 5 w2z

(Bishop, 2006, Hastie et al., 2009)
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Simultaneous feature selection and regression
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Application: Face Recognition

(Wright et al. 2009)

test image training images

ETENEEN

I
1] |

Use the computed sparse coefficients for classification
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(Sun et al. 2009)

Recent-onset Patients

w
o

)
(

>
=
w
jo
[
©
L
£ .30
-~
©
E
P
©
T
O

Elucidate a Magnetic Resonance Imaging-Based Neuroanatomic Biomarker for Psychosis
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From L, to L,/L, (q>1)?
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G rOU p LaSSO (Yuan and Lin, 2006)

v & Z
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p>>n

1 J
min 2 [Ax — Y& + A3 dlix

=1
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Group Feature Selection

group
A

[

0 1 0

0 o0 1

0 0 o0

brain region functional group categorical

variable

35 MICHIGAN STATE UNIVERSITY



Multi-Task/Class Learning via L,/L,

36
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Writer-specific Character Recognition

(Obozinski, Taskar, and Jordan, 2006)

37

etter data set:
— The letters are from more than 180 different writers
— It has 8 tasks for discriminating letter c/e, gly, g/s, m/n, alqg, i,/j, alo. f/t, and h/n

nardd~OdAArandldracalJAldedolcaddfinaaan
ageadeapndidcocadal daddedacnegdffunnana
aAmaﬁa&aaaa&aaumaaaamQQQQ&aaumu@Odqmaamm
Alrﬁﬂﬁ0Q§ﬁa&ﬂﬂmhﬂquaaﬂﬂﬁmamaamaﬂawmQQQm

aanaaaaa§maaaoaam«EGGJaaamaakmkaoaa&aaaa

aacrdnilidadffidonoafolliophcofoneafolabddan
soaeadeafljaddpon-adanf jJoadeciaasagdflanaaan
pAARARAAQANAA{OGadaddl JAdcdadantad(|Rasaaaa
woctfeflldaacdiotandadt sfancdoame@lrasolas=
Aﬁ}ﬁﬂﬁ&ﬂ&&&ﬁﬂﬂanQaq& lagonArnacofolacaan
anasdcndidacfla0ai{ldiod audafoa= a(l] soace
caecodpdiordifffeanddean Acgogdoan aflf nodaa

s M aAAarnecef "AAATAANR R TaYAR NN T A 40 lna noAR s

The letter ‘a’ written by 40 different people
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Fused Lasso

y A

—X 4

E
.- ] L
nx|1 nxp px1 1

b>>n min 5[ Ax = y||3 +fi(x)

p p—1
f(X) = A1 ) I+ A2 ) 1X — Xig]
i=1 i=1
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Application: Arracy CGH Data Analysis

(Tibshirani and Wang, 2008)

« Comparative genomic hybridization (CGH)

« Measuring DNA copy numbers of selected genes on
the genome

* |n cells with cancer, mutations can cause a gene to
be either deleted or amplified

* Array CGH profile of two chromosomes of breast cancer
cell line MDA157.
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Sparse Inverse Covariance Estimation

Sparse Inverse Covariance Estimation

Undirected graphical model
(Markov Random Field)

The pattern of zero entries in the inverse covariance matrix of a
multivariate normal distribution corresponds to conditional

independence restrictions between variables.

40 MICHIGAN STATE UNIVERSITY



The SICE Model

Sparse Inverse Covariance Estimation

<§$%E°§§€§I

arg max log det X — trace(SX) —

X >0

A X

41

Log-likelihood

When § 1s invertible, directly maximizing

the likelihood gives
X=51

MICHIGAN STATE UNIVERSITY




Network Construction

EE

= N
=Biological network
»Social network
*Brain network Equivalent matrix representation

Sparsity: Each node is linked to a small

number of neighbors in the network.
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Matrix Completion

2 | ? ? ? ? - 20 2| 2

? | ? 22 2] 2] ?

? ? ? ? ? ?

2 2| 2 ? ? 2 2| 2
?

* Predict the missing values
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The Netflix Problem

Movies

? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ?

? ? ? ? ? ? ?

Users , > 12 | 2

? ? | ? ?

? ? | ? ?

? ? ? ? ? ?

* About a million users and 25,000 movies
* Known ratings are sparsely distributed
* Predict unknown ratings

Preferences of users are determined by a small number of factors = low rank

44 MICHIGAN STATE UNIVERSITY



Low Rank Matrix Completion

min Z 0(Mj;, Wij) + X * rank( W)
i jeobserved

5

-

low rank

“m

M W
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Matrix Rank

 The number of independent rows or columns
« The singular value decomposition (SVD):

rank

lS!.

46 MICHIGAN STATE UNIVERSITY




Optimization

min
weRd

{f(W) U(w) + r(w) = Zl W)+,W)}

Name

Loss function /;(w)

Least Squares

%(yi — X'f'W)Q

Logistic Regression

log(1 + exp(—y;x; w))

Squared nge Loss

max (0, 1 — y;x; w)*

Name

regularizer (penalty) r(w)

Lasso [49]

A 2221 |wj|

Fused Lasso [50]

d d—1
A1 Zj:l [wj| + A2 Zj:l — Wji+1]

|w;

Graph Fused Lasso [8]

d
A1 Zj=1 lwj| + A E(j,k)eé’ |wj — wgl

Group Lasso [65]

K
A k=1 [1Wa |

Sparse Group Lasso [13, 44|

d K
A1) = 1|'wal+/\22k 1 [wg, |l

Tree Lasso [34, 24|

K;
Z] _12 k21 )‘k“WgJ |
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Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

min f(x)=loss(x) + Axpenalty(x)

Model

1
M(x;, i) = [loss(x;)+(loss'(x;), x—x,-}]—l—?||x—x,-||%—|—)\><penalty(x)
/i

/

] N\

P4

1st order Taylor expansion

Regularization

4 Repeat h
Xiy = arg min M (x;, ;)
Until “convergence”
/

N
Nonsmooth part

Convergence rate O( /N )

MICHIGAN STATE UNIVERSITY




First Order Optimization

' 1
wFtl = argmin { I(s¥) + VI(sF)T (w — sF) + —||w — sF||? + r(w)}
WeRd L 2ak

( 2
— arg min « 1 HW — (sk — ale(sk))“ + akr(w)}
WERd \ 2

= Proxg,, (sk — ale(sk)) :

 FISTA, SpaRSA
* How to efficiently solve the proximal operator problem?

e Closed-form solution for L1, L1/L2, analytical form for
trace norm

49 MICHIGAN STATE UNIVERSITY



Second Order Optimization

— Compute the descent direction:

1
AwF = arg min {l(wk) + VI(wFTAw + §AWTH'“AW +r(wk 4+ Aw) — r(wk)} :
AweRd

where H* is the (approximated) Hessian matrix of [(w) at w = w*.

— Iterate along the descent direction:

wrhtl — wk + ap AwF.

* How to efficiently solve the above subproblem?
— Coordinate Descent, FISTA, SpaRSA

50 MICHIGAN STATE UNIVERSITY



Stochastic Optimization

e Randomly pick a sample i € {1,--- ,n}.
e Evaluate the gradient on the i-th sample and generate a sequence {w*} via

wrtl = arg min {l(wk) + VI (wh) T (w — wF) + QL"W wF||? 4+ (W)}
weRd

— arg min {5 HW — (wh — ale,-(wk))” + akr(w)}

weRd

= Prox],, (Wk — alei(Wk)) :

51 MICHIGAN STATE UNIVERSITY



Road Map

* Introduction to Sparsity

« Convex Approaches

* Non-Convex Approaches
* Topic: Matrix Completion

* Topic: Multi-task Learning
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Non-convex Sparse Models
in {f{w) = l(w) + Ar(w)}

[(w) and (W) may not be convex

2.5, . -
“
L4 ’0’
IS "
2 .-'—,h——
. \N% NP ,‘
* 9 L ] .
1.5
1 —— |1
- g = CapL1
= wmm | SP
0.5 == wum MCP
sumsn SCAD

W e 6 4 2 0 2 4 6 8 o
Ref. J. Fan (2001, 2012), H. Zou (2008), X. Shen (2012)
T. Zhang (2010,2012), C.H. Zhang (2010)
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Different Non-convex Penalties

54

f1-norm XNwi|
“LSP X og(1 + [wi[/0) (8 > 0)
SCAD A fy min (1, 55 ) dz (0> 2)
)\|w,-|, lf |wz| S ’\a
2 112
= { T A < fwi] < 0,
(6 +1)A2/2, if |wi| > 6.
MCP A= &), dz (0> 0)
_ [ Awil —wi/(20), if |wi| <6,
| 6A%/2, if |w:| > 6.
Capped ¢1 | Amin([w;][,8) (6 > 0)
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Non-convex Models: Advantages

» Better approximation of Ly-norm: reduce over-
penalization

* Theoretical advantages of non-convex sparse
learning models over the convex ones
— Unbiased feature selection
— Weak conditions to achieve oracle properties
— Sharp parameter estimation bound

« Computational Challenges

Ref. J. Fan (2001, 2012), H. Zou (2008), X. Shen (2012)
T. Zhang (2010,2012), C.H. Zhang (2010)
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Example: Non-convex MTL Model

A4/ /70 /s

n-n-

I

in {I(W)+r(W
1_1}_,;%&”“{( ) +r(W)}

d
EE | E r(W) =AY min (|w’[,8) Non-convex
j=1

Joint feature selection

4

Shared features + Task specific Features

Pinghua Gong, Jieping Ye, Changshui Zhang. Multi-Stage Multi-Task Feature Leaming. NIPS 2012.

56
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Optimization Algorithm

MSMTFL: Multi-Stage Multi-Task Feature Learning

1. Initialize A§“3 — )

d
2. W = ar (W A=D1 reweighted Lasso
g pmin W)+ ATl g
repeat - 7=1

_3. A M (|(W'Y |, <6) (j=1,---,d) |penalize small rows

o7 MICHIGAN STATE UNIVERSITY



Parameter Estimation Error Bound

WO — W||ay =0.8720 (m\/zF ln{dm/?})/n) + O (m VT/n+ ln(l/n)/n)

Exponential shrinkage & stage-wise Improvement

m=15,n=40,d=250,6=0.01

—6— 0=5e-005
—&— ¢=0.0001 ||
—&— 0=0.0002 |-
—+— 0=0.0005

A = ay/In(dm)/n,

Paramter estimation error (L2,1)

0
2 - 6 8 10
Stage
Lasso: [WEasse W1 =0 (m\/:F ln(dm/n)/n)

MSMTFL: WO — Wy =0 (m\/;’_‘/n + ln(l/n)/n)
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A General Solver
» Difference of Convex Programming

min { f(w) = f1(w) — fa(w)} fi(w), fa(w) are convex

weRd
Convex ‘ Sub-problem

w1 = arg min f(w) = fo(w®) = (sa(w), w — wi®)
W IR

So (w““'}): sub-gradient of fo(w) at w = wik)

Multiple times of solving convex sub-problems!!

The convex sub-problem usually doesn’t have a
closed-form solution!!

59 MICHIGAN STATE UNIVERSITY




GIST. General Iterative Shringkage and

Thresholding for Non-convex Problems
min {f(w) =l(w) + Ar(w)}

weRd
(k)
w1 = argmin I(w'®) + (VI(w)), w — w*)) + tTHW — w12 4+ Ar(w)
I ul®) = wik) _ Vi(w“‘])/t{k]

Proximal

1
(k+1) _ :
Operator |W arg mn

A
k)12 |
[w —ul®]| +t{—k]f‘(w]

2

Closed-form solution: Capped L1, LSP, SCAD, MCP Non-convex

Pinghua Gong, Jieping Ye, Changshui Zhang. A General Iterative and Shrinkage Thresholding
Algorithm for Non-convex Regularized Problems. ICML 2013.
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Step Size Selection

» Initialization: Barzilai-Borwein (BB) rule
—win W = viw ) - VW)

_ (k) (k)
k) _ k)2 — x\y™)
y (x(F), x(F))

%) = arg mtin [#x!
» Line Search: Monotone & Non-monotone

(wlk 1)y < , el T (B o (k41 (k)2
W max W £ | wW W
f( ) - .i:1115.x{l].k'-—1rn—1—1},_---..‘r-f( ) 2 || ”

Where o € (0,1) Is a constant

m=1: Monotone; m>1: Non-monotone
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[(w) + Ar(w)}

o
e
(-
e
_

e

L'"':-

——

2
1

O A1: I[(w) is continuously differentiable with
Lipschitz continuous gradient

O A2:r(w) is a continuous function with
difference of two convex functions:

r(w) =ry(w) —ro(w)

O A3: f(w) is bounded from below
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Example

Least Squares:

|

Logistic Regression: (W) =~ 3 log (14 exp(—yix/ w))

Squared Hinge Loss:

Non-convex
Regularizer

63

1=1
T

[(w) = % Z max (U, 1 — y.i_::{?w)g

i=1
2.5, i i
~.\. "‘
N, e
S .
0\ ’,
0\ \
1.5]. K
== o= = Capl1
- we= | SP
0.5 == we== MCP
=smss SCAD
ot r r r r r
10 -8 -6 -4 6 8 10
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Convergence Analysis

Theorem 1: Let the assumptions A71-A3 hold and the
monotone/Non-monotone line search criterion in be satisfied.
Then all limit points of the sequence {w"'} generated by GIST
are critical points.

Theorem 2: Let the assumptions A1-A4 hold and the
monotone/non-monotone line search criterion be satisfied.
Then the sequence {w*} generated by GIST has at least one
limit point.

A4 : f(w) = 400 when ||w]| — 400

64 MICHIGAN STATE UNIVERSITY



Evaluation: Convergence

= = = MS—-Nesterov

= = = MS-SpaRSA

vem o m GIST-1

v =1 GIST-* Y

GIS Tbb—Monotone
GISThb—Nonmonotone
SCPbb-Nonmonotone |

. news20 (A=0.001, 6=0.14) ohscal (A=0.001, 6=0.001%)
10 . . . . . 10° . . . : T . T

6 ‘qtn=n::---¢----.-..-..-.4----.-.-—“'---L-: ~~~

® M. =2 2 TTrETEEmsms=e-- G ~’G,'= r—? -

§ % } - :.'.-,:.":,'":E'.E"-‘—"’--L'I-'-'-u-.n.-u-.'-
3 107'F e

o [=2]

=2 2

z 3

g g -
c 107k

8 o o

g g |

2 2
0 -

% i 107 3

g a
O

10'2 1 1 1 1 1 1 1 10—4 , , , . . , ,
0 10 20 30 . 40 50 60 70 80 0 5 10 15 20 25 30 35
CPU time (seconds) CPU time (seconds)
65
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Evaluation: Recovery Performance

n=100,d=250,s=30,v=0.5 n=100,d=250,5s=30,v=0.5

—

o
©

o
©

0.7

Feature Selection Consistent Accuracy

S
L
[ =4
S
£ 0.6 —he— MS(6=0.51)
8 —— MS(6=12)
5 05 —e— MS(6=22)
g 04 —p— MS(8=42) |
e —t— GIST(6=0.51)
o 0.3 —t— GIST(6=12) [T

0.2 —6— GIST(6=21)

' —&— GIST(6=41)
01 : -2 0 ) 2
10 10 10
A
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Software: GIST

GIST: A Non-Convex Sparse Learning Package

« Loss functions:
* The least squares loss
* The logistic loss
* The squared hinge loss (L2 SVM loss)

 Non-convex Regularizers:
« LSP
« SCAD
- MCP
« Capped L1
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Proximal Alternating Linearized
Minimization (PALM) [Bolte et. al. 2013]

Letw=(u,v),/(w)=[(0,v),r(w)=r(a)+r,(V)

min,, {{(w)+r(w)} & min,  { f(w,v)=I(,v)+rw)+rV)}

e Fix u = u* and conduct a proximal gradient descent with respect to v:

1
vkl = arg min {l(uk, Vk) + Vvl(uk, Vk)T(V — Vk) + 2—||V — Vk”2 + 7'2(")}
L

v

1 2
= arg min {5 Hv — (vF — g Vyl(u*, Vk))“ + akrz(v)}

v

= Prox;2 (vk — aval(uk,vk)) :

e Fix v = v¥*! and conduct a proximal gradient descent with respect to u:

uk+1 — arg min {l(uk’vk+1) + Vil (uk, VYT (0 — ub) + %”u — b2 + 7,1(u)}
u k

= arg min {% ”u — (u* — BVl (uF, v"’“”l))“2 + Bkrl(u)}

u

s = Proxj (uk — BiVaul(u*, vk‘H)) :



Quasi-Newton Method [Rakotomamonijy et. al. 2015]

69

min__, 1 f(W)=I(W)+r(w)}
[(w) = Il(w) — I(w) and r(w) = #(w) — 7(w)

i (W),Z (w),r(w),7(w) are convex functions (lA (w) and [ (w) are

differentiable but 7(w) and 7(w) are typically not)

Approximate l (w) using the second-order information and

approximate [ (w),7(w),7(w) using the first-order information
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Quasi-Newton Method [Rakotomamonijy et. al. 2015]

e Compute the descent direction:

Aw* = arg min {f(wk) + Vi(wF)T Aw + %AWTH’CAW —I(wF) = VI(w"TAw
AweRd

+7(w) — 7F(wF) — gr(wk)TAW} :

where g,(w*) is a sub-gradient of 7#(w) at w = w* and H* is the (approximated)

Hessian of I(w) at w = w¥.

e Iterate along the descent direction:

whtl — wk + akAWk.

O The cost of solving the regularized QP sub-problem is high!
O Avoid solving the QP sub-problem at each iteration (-onor. 2015).
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HONOR: Hybrid Optimization for Non-convex
Regularized problems [Gong and Ye, NIPS 2015]

min__, 1 f(W)=I(W)+r(w)}

Al:l(w) is coercive, continuously differentiable and VI(w)is Lipschitz
continuous with constant L. Moreover, [(W) > —, VW € R".

A2 :r(w)= 2 p(lw; ),where p(7) 1s non-decreasing, continuously differentiable
i=1

and concave with respect to ¢ in [0,o0); p(0) =0 and p'(O) # 0 with
p'(t) =dp(t)/dt denoting the derivative of p(¢)at the point ¢.
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Examples: Non-convex Regularizers

min__, 1 f(W)=I(W)+r(w)}

LSP: p(Iw, )= Alog(1+ 1w, 1 /0)

 Alw, if 1w, 1< A,
142 12
SCAD: p(Ilw, ) = w204 1w, 1 =4 , if A<lw, S04,
/ 20-1)
O@+1DA* /2, if 1w, > 67.

Alw. l—w? [(20), if lw, I<6A,

MCP: p(Iw, )=
P OL% /2, if 1w, I>0A.
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Mining Second-Order Information

« Obtain a direction using second-order information

d‘ =arg min{ FWH+OF(WH d + %dTB"d} = —H"Of (w")

h Viw)y+p (w]), if w >0,

Vitw)y—p (w.]), if w <0,

H*=(B*)", 0.f(w)y=y VIw)+p (0), if w=0,VI(w)+p (0)<0,
L_B?G S Viw)-p(0), if w=0,VI(w)-p(0)>0,

0, otherwise.

p“ =n(d";v"), where v = —0f (w")

: projection operation that keeps y and x in the same orthant
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HONOR: Hybrid Strategy

 Hybrid Strategy: QN-step or GD-step

T ={ie{l,-,n}:0<lwfI<min(lv* l,e),w v <0}

Empv \ Non:{
empty

QN-step GD-step

¢ QN-step: w'(a@)=m(w"+ap“;w")
Line search (QN): f(w*(a))< f(Ww")—ya(v*)" d*
* GD-step: W@« argminX{Vl(Wk)T(w—wkHi||W—Wk 1>+ 1l w ||1}

Line search (GD): f(w*(a0)) < f(w*)— % Il w* (o) —w* I
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Why Hybrid Strategy

* The optimization problem is non-smooth

* The operation of projection a vector back
to the previous orthant is not easy to
handle

* The key difficulty: if there exists a
subsequence x such that {x'}. converges
to zero, it is possible that for a large
enough  kek, |x¥| Is arbitrarily small
but is never equal to zero.
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Experiments (LSP)

76

LSP (kdd2010a)

ws HONOR(e=1€-10) | -
we we == HONOR(e=1€-6) | ]
wmmm v HONOR(e=1e-2)
mmime (GIST

.-.-. -
-

Objective function value (logged scale)

CPU time (seconds)
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Experiments (MCP)

MCP (kdd2010b)

§ 1 L L L) 1 ]
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-§ 102 T
S L
: "\\
: -3
§ 10 \.\
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CPU time (seconds)
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Experiments (SCAD)

SCAD (urh

s HONOR(e=1€-10)
we we == HONOR(e=1e-6)
s w2 HONOR(e=1€-2)
e (GIST
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o
o
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i
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e
J
i
’

—
S
N

Objective function value (logged scale)

=
w

0 05 1 15 2 25
CPU time (seconds) x 104
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Road Map

* Introduction to Sparsity

« Convex Approaches
 Non-Convex Approaches
* Topic: Matrix Completion
* Topic: Multi-task Learning
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Matrix Completion

Matrix Completion WETEL
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Image Recovery

* Recover the original image with partial observation
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Collaborative Filtering

Items
Pl 2] 2] ? r2NN I B
20 I T R T e T O O 2 - I ?
?2 0 ? | ? PP

Customers ST o [ - A I

 Customers are asked to rank items
 Not all customers ranked all items
* Predict the missing rankings (98.9% is missing)
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The Netflix Problem

BIERERERE HIERE
K d HEHEEEE
222222 [2]
BIERE 2222122

UserS!i? 2> | 2 HIERE
2 dEHEEREEREE B
BIERERERE NIENERE
HIERE JEEERENE

* About a million users and 25,000 movies
* Known ratings are sparsely distributed

Preferences of users are determined by a small number of factors > low rank
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Matrix Rank

* The number of independentrows or columns
* The singular value decomposition (SVD):

rank
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Low Rank Matrix Completion

* Low rank matrix completion with incomplete observations can
be formulated as:

min rank(X)

X

st. P,(X)=P,(Y)

x. (i,j)eQ
with the projection operator defined as: F.(X) =

0 @G,))eQ

MICHIGAN STATE UNIVERSITY



Other Low-Rank Problems

Multi-Task/Class Learning

Image compression

Foreground-background separation problem in computer
vision

Low rank metric learning in machine learning

Other settings:

— System identification in control theory

— low-degree statistical model for a random process

— a low-order realization of a linear system

— a low-order controller for a plant

— a low-dimensional embedding of data in Euclidean space
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Two Formulations for Rank Minimization

min loss(X) + A*rank(X) min rank(X)

1 subject to loss(X)< €
loss(X) = EHPQ (X)- Py (V) J (%)

Rank minimization is NP-hard
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Trace Norm (Nuclear Norm)

Trace norm of a matrix is the sum of its singular values:

0 oo -+~ O .
X = U] . A

X 1]

|
7

* trace norm & 1-norm of the vector of singular values

« trace norm is the convex envelope of the rank function
over the unit ball of spectral norm = a convex relaxation
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min loss(X) + Ax||X]|

min X1,

subject to loss(X)< ¢

« Can be solved by semi-definite programming

« Computationally expensive

* Recent more efficient solvers:

« Singular value thresholding (Cai et al, 2008 )
» Fixed point method (Ma et al, 2009)
» Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)
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Trace Norm Minimization

* Trace norm convex relaxation

min ||X noisy case
X

: 1
st Pa(X)=Py(Y) ‘ min §||PQ(X)—PQ(Y)||3:+ZIIX

Can be solved by

* sub-gradient method

» the proximal gradient method
 the conditional gradient method

*

Convergence speed: sub-linear

lteration: truncated SVD or top-SVD (Frank-Wolfe)

Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717-772, 2009.
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.
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Gradient Descent for the Composite Model

(Nesterov, 2007; Beck and Teboulle, 2009)

min f(x)=loss(x) + Axpenalty(x)

Model

1
M(x;, i) = [loss(x;)+(loss'(x;), x—x,-}]—l—?||x—x,-||%—|—)\><penalty(x)
/i

/

] N\

P4

1st order Taylor expansion

Regularization

4 Repeat h
Xiy = arg min M (x;, ;)
Until “convergence”
/

N
Nonsmooth part

Convergence rate O( /N )
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Proximal Operator Associated with

Optimization problem

minf(X) = loss(X) + AX]|.

Associated proximal operator

. |
X" = my(V) = argmin 5 |[X — VIZ+A < [IX]).

Closed form solution:  x* = pdiag(5)Q".

where V = Pdiag(oy, 02, .. ., or)QO" is the SVD of V € R™*",

k = min(m,n), P € Rk O € R"™k and

g; —

- Vi— A o> A
0 O‘,‘S)\

MICHIGAN STATE UNIVERSITY
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A Non-convex Formulation via Matrix
Factorization

« Rank-r matrix X can be written as a product of
two smaller matrices U and V
X=UV"

ri

*

X

.1
- min LU + V)

X=UV’
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Alternating Optimization

. 2 1
min R (UVT) = (Y], += (U} +VI})

Non-convex

 Can be solved via

 Alternating minimization (Jain et al, 2012)
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2
min |P. UV - P, (Y)HF

v

t

., =argmin|P, (UV'- Y)‘

VeRnXk t+1

U, =argmin|F, (UV,~Y)

UeR™*

* Under certain condition with proper initialization,
alternating optimization algorithm guarantee
geometric convergence.
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Practical Algorithm

my oz

U, v,z

st.  P(Z)=P,(Y)

L=|uv'-Z| ~AeP,Z-Y)

* The Lagrangian function can be solved by
alternating optimization method.

* Weak convergence guarantee
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Robust Matrix Completion

min |7, (Z-Y)),
s.t. uvi-7

L=|Py(Z-Y)|,+(A. UV -Z)+ g”UVT— z|.

* The robust matrix completion problem can be
solved by augmented Lagrangian alternating
direction method.

« Weak convergence guarantee
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Summary of Two Approaches

 Trace norm convex relaxation

min 1], noisy case
. 2
o P(O=p(y) W) min P00~ P +A[X].
r x, (LHERQ
Projection operator: Fy(X) =4
0 (i,)EQ
» Bilinear non-convex relaxation
X=UV'

min [RUV) RV, ﬁ - - I
r
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Rank-One Matrix Space

Rank-one matrices with unit norm as Aioms

MeR>™ for M=uww' ueR" veR”
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Matrix Completion in Rank-One Matrix Space

« Matrix completion in rank-one matrix space

,omin 6]
S.t. PQ (X(H)) = PQ (Y)

with the estimated matrix in the rank-one matrix space as X(0)= ) 6,M,

« Reformulation in the noisy case

min  |P,(X(@) - By (V)|

X(8)
st |ell, <

We solve this problem using an orthogonal matching
pursuit type greedy algorithm. The candidate set is an
Infinite set composed by all rank-one matrices Me X"
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Vector Case: Compressive Sensing

 When data is sparse/compressible, can directly acquire a
condensed representation y = Pz

X
Yy > -
BN x 1
M x 1 — | sparse
measurements ... - signal
MxN #
H K
K< MKN nonzero

entries
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Convex Formulation for Recovery

Y €T
M x 1 . : N x 1
random — N sparse
measurements 1 signal
n K
H nonzero
n entries

0 Signal recovery via‘:optimization

[Candes, Romberg, Tao; Donoho]

r = arg min ||z||1

y=>dx
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Greedy Algorithms

Y T
M x 1 . : N x 1
random T N sparse
measurements 1 signal
MxN H K
H nonzero
n entries

o Signal recovery via iterative greedy algorithms

o (orthogonal) matching pursuit [Gilbert, Tropp]

o iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; Daubechies,
Defrise, De Mol; Blumensath, Davies; ...]

o CoSaMP [Needell and Tropp]
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Greedy Recovery Algorithm (1)

» Consider the following problem

N x 1

sparse
signal

1 sparse

IIIIIIIIIIIIII.H

 Can we recover the support?
— 1-Sparse (only one support)
— K-Sparse
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Greedy Recovery Algorithm (2)

(2 €T
A
__ 1 N X1
- — sparse
u signal
H 1 sparse

c If & = [¢17¢27"'7¢N]
then argmax | (¢;,y) | gives the support of x

 How to extend to K-sparse signals?
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Greedy Recovery Algorithm (3)

Y b €T
H I |
_ m B N X ].
— ... - sparse
| signal
M x N H
H Ksparse
Residue: r=vy— ®xrL_
Find atom: k = arg maX| <¢za T> |
Add atom to support: S=S5 U{k}

Signal estimate T = ((I)S)Ty
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Orthogonal Matching Pursuit

goal:
given y = ®x, recover a sparse I
columns of ® are unit-norm

initialize: o = 0,r =y,A={},i=0

iteration:

or =1+ 1

ob=®Tr

olk = argmax{[b(1)],[b6(2)],...,|b(NN)|}] Find atom with largest support
oAN=AJk

ol(Zi)ia = (®a)Ty, (Zi)jae =0 Update signal estimate

olr =y — O, Update residual

Baraniuk etal., 2012
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Orthogonal Rank-One Matrix Pursuit for Matrix
Completion

« Matrix completion in rank-one matrix space

min [ X(©) - B[]

(@) e
5.t 6|, <r —
I
I B L |
X(0)=)Y 6,M,

el

We solve this problem using an orthogonal matching pursuit type
greedy algorithm. The candidate set is an infinite set composed by all
rank-one matrices.
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Rank-One Matrix Basis

Step 1: basis construction , _ _
with residual matrix

[u*,v*]=argmax<R,uvT>=uTRv R=Y,-X,

=1 V=1

M =uv! is selected from all rank-one matrices with unit norm.

All rank-one matrices

T —
I <l Al >
(e J — 1
I |
II E—) M = 10

Top-SVD

Infinite size
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Rank-One Matrix Pursuit Algorithm

Step 1: construct the optimal rank-one matrix basis

[u,.,v.]= argmax<(Y— X, )Q,uvT> M, =uv,

This is the top singular vector pair, which can be solved efficiently by power method.

This generalizes OMP with infinite dictionary set of all rank-one matrices M e R™™"

Step 2: calculate the optimal weights for current bases
2
YoM, -Y

This is a least squares problem, which can be solved incrementally.

0" = argmin
OeR*

Q
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Linear Convergence

o Linear upper bound for the algorithm to converge

Theorem 3.1. The rank-one matrix pursuit algorithm
satisfies

Rl < 7" Yo, VE=1

v is a constant in [0,1).

This is significantly different from the standard MP/OMP algorithm with a finite dictionary,
which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends
on the top singular vector pair pursuit step.

Z.Wang et al. ICML’14; SIAM J. Scientific Computing 2015
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Efficiency and Scalability

* An efficient and scalable algorithm for
matrix completion: Rank-One Matrix
Pursuit

— Scalability: top-SVD

— Convergence: linear convergence

Z.\Wang et al. ICML’14; SIAM J. Scientific Computing 2015
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Related Work

Atomic decomposition X =Y 6,M,
el

can be solved by matching pursuit type algorithms.

o Vs. Frank-Wolfe algorithm (FW)

Similarity: top-SVD
Difference: linear convergence Vs. sub-linear convergence

o Vs. existing greedy approach (ADMiRA)

Similarity: linear convergence

Difference: 1. top-SVD Vs. truncated SVD
2. no extra condition for linear convergence

Ref: Lee, K. and Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402—4416, 2010.
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Time and Storage Complexity

* Time complexity

ADMiRA & AltMin Proximal
Each lter.  O(|Q]) O(r|Q|) O(lQ]) o(r|Q|) O(r|Q|)
Iterations  O(log(1/e))  O(log(1/g)) O(1/¢) O(1/e) O(1/¢)
Total O(|Qllog(1/g)) O(r|Q|log(1/¢)) O(Q/e) OrQINe)  O(r|Ql/e)

minimum iteration cost
+ linear convergence

Storage complexity
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Economic Rank-One Matrix Pursuit

« Step 1: find the optimal rank-one matrix basis

lu.,v.]= argmax<(Y— Xk)Q,MVT> Mk+1 _ u*V*T

u,v

Step 2: calculate the weights for two matrices

o = arg min”OCl Xk + O, Mk+1_ Y“;
acR?

Hik_l — Hik_l al Hik — az

It retains the linear convergence

Theorem 4.1. The economic rank-one matrix pursuit
algorithm satisfies

[R&l| < 3" Yo, VE>1.

7 is a constant in [0,1).
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Convergence
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Experiments

* Experiments

— Collaborative filtering
— Image recovery
— Convergence property

« Competing algorithms

— singular value projection (SVP)
— spectral regularization algorithm (Softimpute)
— low rank matrix fitting (LMaFit)
— alternating minimization (AltMin) alternating optimization
— boosting type accelerated matrix-norm penalized solver (Boost)
— Jaggi's fast algorithm for trace norm constraint (JS)
— greedy efficient component optimization (GECO)
— Rank-one matrix pursuit (R1MP) atomic decomposition
— Economic rank-one matrix pursuit (ER1MP)

trace norm minimization
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Collaborative Filtering

Running time for different algorithms

Dataset | SVP | SoftImpute | LMaFit | AltMin | Boost | JS | GECO IMP ERlMP*
Jesterl 18.35 161.49 3.68 11.14 | 9391 | 2968 | > 10* | 1.83 0.99
Jester2 16.85 152.96 242 1047 | 261.70 | 2852 | > 10F | 1.68 0.91
Jester3 16.58 10.55 8.45 1223 | 24579 | 1294 | >10° | 0.93 0.34
MovieLens100K | 1.32 128.07 2.76 323 287 | 286 | 1083 | 0.04 0.04
MovieLensIM 18.90 59.56 30.55 | 68.77 | 9391 | 13.10 | > 10% | 087 0.54
MovieLens1OM | > 10° > 10° 154.38 | 310.82 — 130.13 | > 10° |\.23.05 13.79
Prediction accuracy in terms of RMSE

Dataset [ SVP [ Softlmpute | LMaFit | AltMin | Boost | JS | GECO J RIMP | ERIMP }
Jester] 47311 | 5.1113 | 4.7623 | 4.8572 | 5.1746 | 44713 | 4.3680 | 4.3418 | 4.3384
Jester2 47608 | 5.1646 | 4.7500 | 4.8616 | 5.2319 | 4.5102 | 4.3967 | 4.3649 | 4.3546
Jester3 86958 | 54343 | 9.4275 | 9.7482 | 5.3982 | 4.6366 | 5.1790 | 4.9783 | 5.0145
MovieLens100K | 0.9683 | 1.0354 12308 | 1.0042 | 1.1244 | 1.0146 | 1.0243 | 1.0168 | 1.0261
MovieLensIM | 0.9085 | 0.8989 | 0.9232 | 0.9382 | 1.0850 | 1.0439 | 0.9290 | 0.9595 | 0.9462
MovieLens1OM | 0.8611 | 0.8534 | 0.8625 | 0.9007 - 0.8728 | 0.8668 ,0.8621 | 0.8692
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Summary

* Matrix completion background
 Trace norm convex formulation
 Matrix factorization: non-convex formulation

» Orthogonal rank-one matrix pursuit

— Efficient update: top SVD
— Fact convergence rate: linear
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Road Map

* Introduction to Sparsity

« Convex Approaches
 Non-Convex Approaches

* Topic: Matrix Completion

* Topic: Multi-task Learning
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Road Map

* Part I: Multi-Task Learning (MTL) Background and
motivation

* Part ll: Overview of MTL Models

« Part lll: Application of MTL on disease progression

« Part IV: MTL Software Package (MALSAR)
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Multiple Tasks

« Examination Scores Prediction’

School 1 - Alverno High School

Student Birth Previous School
id year score ranking

72981 1985 83% ?

| J \ )

Y Y
student-dependent  school-dependent e

School 138 - Jefferson Intermediate School
Birth Previous School
year score ranking
31256 1986 72%

\ ] )
Y Y
student-dependent  school-dependent

School 139 - Rosemead High School

Birth Previous School
year score ranking
12381 1986 77% ?

\ J \ J
1 !

student-dependent  school-dependent

The Inner London Education Authority (ILEA)
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Learning Multiple Tasks

* Learning each task independently

School 1 - Alverno High School

Student Birth Previous School
id year score ranking

72981 1985 83%

School 138 - Jefferson Intermediate School

Birth Previous School
year score ranking )

31256 1986 72%

Excellent

School 139 - Rosemead High School

Birth Previous School
year score ranking 9 |:>

12381 1986 77%
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Learnlng Multiple Tasks

_eaning multiple tasks simultaneously

/~ school 1 - Alverno High School

Birth Previous School
year score ranking

72981 1985

Birth Previous School
year score ranking é

School 138 - Jefferson Intermedlate School
31256 1986

School 139 - Rosemead High School
Birth Previous School
year score ranking %

12381 1986

Q Learn tasks simultaneously
@ @ Model the tasks relationship
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Performance of MTL

o Evaluation on the School data:

 Predict exam scores for 15362 students from 139 schools

« Describe each student by 27 attributes

« Multi-task learning performs significantly better than other single task learning

approaches.

1.05 :

L L L L L
—e— Ridge Regression

— | 9SSO

1 = Trace Norm u

0.95

0.9

N-MSE

0.85

0.8

0.75

0.7

Index of Training Ratio
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Performance
measure:

mean SCIUBFECI error

N-MSE = -
variance (target)



More Applications of Multi-Task Learning

HIV Therapy Collaborative ordinal Disease progression
Screening jsickel, icmi0s] regression modeling
[Yu et. al. NIPS'06] [Zhou et. al. KDD'11, 12]

G I lSez

Web image and video Disease prediction Protein classification

[Wang et. al. CVPR09]
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Traditional Machine Learning

* Elements of machine
learning on single task

* The problem _
(task/domain) ﬁ"eiiﬂ'.?,z
e Training data Algorithms
« Learning algorithms
* Trained model
* Applying model on

unseen f:lat? Generalization
(generalization)
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Transfer
Learning
Algorithms

Trained Model

Generalization
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Knowledge



Multi- Task Learning

\
Task 3 Domain
J
Multi-Task Learning
4 )\
Trained Model Trained Model Trained Model
\_
Generaliz Generaliz Generaliz
ation ation ation
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The Multi-Blah Family

Multi-Task Learning
» A set of related machine learning tasks
» Different samples, (usually) same features for each task
Multi-View Learning
* Alearning task involving a set of different views of the same set
of objects (e.g., text and image descriptions)
« Same samples, different features for each view
Multi-Label Learning
* Alearning task where the prediction for each sample includes
multiple labels (e.g., news categories)
« Can be considered as multi-task with the same data matrices
Multi-Class Learning
» A classification task where the label can be multiple values (e.g.,
weather prediction)
« Can be considered as multi-label with mutual exclusive labels.
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Overview of MTL Models
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Achieve Multi-Task Learning

« Shared Hidden Nodes in Neural Network
« Shared Parameter Gaussian Process
* Multi-Task Regularization
« Can be designed to incorporate various assumptions
and domain knowledge
« Can be trained using large-scale optimization
algorithms on big data
* The key is to design the regularization term that
couples the tasks.
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Representative Regularized MTL

 Mean-Regularized MTL

 MTL with High-Dimensional Features
 Embedded Feature Selection
* Low-Rank Subspace Learning

* Clustered MTL
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Notation

Dimension d
A

Task m

Sample n,

Sample n,
Sample n,

Feature Matrices X; Target Vectors Y;

e We focus on linear models:
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Task m

Task m

Model Matrix W
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Mean-Regularized Multi-Task Learning

Evgeniou & Pontil, 2004 KDD
* Assumption: task parameter vectors of all tasks are
close to each other.
— Advantage: simple, intuitive, easy to implement
— Disadvantage: may not hold in real appllcatlons

Regularization
penalizesthe deviation of each task
from the mean

mln—IIXW Y|
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Multi-Task Learning with Joint Feature Learning

Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report
* Using group sparsity: ¢; /£,-norm regularization

* When g>1 we have group sparsity.

W
Samplel ; :
‘ ‘ ‘ ‘ Sample3 %% [
illl.llﬂumlllluli Eﬁ!ﬂﬁ-ﬁ L]
\«" *1, \p I o
R C N <@
Output Input Model
nxXm nxd dxm
1 Regularization
minz [1XW = Y12 + AWlly, Wil = Y llwll,  Encouragesgroup

sparsity
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Writer-Specific Character Recognition

Obozinski, Taskar, and Jordan, 2006

« Each task is a classification between two letters

for one writer.
| S85655855
Jlss{qss5G

pixels: error (%)
Task 81/82 81/61 ldel pOOl
c/e 40 85 00 45
g/y 11.4 16.1 17.2 186
g/s | 4.4 10.0 10.3 6.9
m/n| 2.5 63 6.9 4.1
a/g | 1.3 36 41 3.6
/7 12.0 14.0 14.0 11.3
a/o | 2.8 48 52 4.2
f/t 5.0 6.7 6.1 8.2
h/n 3.2 14.3 18.6 5.0
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Dirty Model for Multi-Task Learning

Jalali et. al. 2010 NIPS

* |n practical applications, it is too restrictive to constrain
all tasks to share a single shared structure.

Group Sparse Sparse
Component Component

P Q
rlgliQnIIY —X(P + QIE + 2411Plly,q + A211Qlly
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Robust Multi-Task Learning

o Most Existing MTL o Robust MTL Approaches
Approaches

all tasks are relevant

NS

/>

<X
SN

Assumption:
All tasks are related

relevant tasks

irrelevant task

-

@

irrelevant task

Assumption:
There are outlier tasks
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Robust Multi-Task Feature Learning

Gong et. al. 2012 KDD
e Simultaneously captures a common set of features
among relevant tasks and identifies outlier tasks.

Joint Selected

Features Outlier Tasks

e

Model Group Sparse Group Sparse
W Component Component
P Q

mlnllY X(P+ QI+ 211IPllyq + 220107 1,4
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Low-Rank Structure for MTL

o Capture task relatedness via a shared low-rank

structure
training data weightvector  target basis vector  basis vector
f | ) I
Task 1 I : I X =~ = (04 + a,
| |
. : uy L L
(| | i I
Task2 | | | - —
% = Pi| |t B
| |
\_ : -/ - L
(| | ) N ] i
X = —
Task3 | : l = Vil |t 72
I |
. )/ T L L
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Low-Rank Structure for MTL (Cont.)

a;  ax1’
= X
b1 B2
3 L Yi V2
- _ - —J Coefficients

Y
Basis vectors

e Rank minimization formulation
— mmi/n Loss(W) + AXRank(W)

Y
Model Matrix

 Rank minimizationis NP-Hard for general loss functions thus
we use convex relaxation: trace norm minimization

— mM;nLOSS(W) + AX[|[W]|. Regularization

Encourages low-rank
on the model matrix
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Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL

e ASO assumes that the modelis the sum of two components: a
task specific one and a shared low dimensional subspace.

e N
Task 1 + X [l -
~
\ — / ,,,,,,,,,,,,,,,
<\\
Task 2 w, [+ X |v2| ;
~ !
i Low- %
- Dimensional |
[ /_/yi Feature Map%
Task m Input X Vi | o
~
- J
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Alternating Structure Optimization (ASO)

Ando and Zhang, 2005 JMRL

o Learning from the i-th task
u; =0v; + w;

Xm

Xi

ll

Low-
Dimensional
Feature Map

0,{vi,wi}

m
min Z{LI(XI(GVI + Wi),yi) + CZ”Willz}
i=1

subject to eTe =1

144 Li (Xl (eVi + Wi),yi) = ”Xl (eVi + Wi) - Y ”2
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Incoherent Low-Rank and Sparse Structures

Chen et. al. 2010 KDD

 ASO uses L2-norm on task-specific component, we can also
use L1-norm to learn task-specific features.

Task-specific features Capture task relatedness

************************************************************************************

= + = basis X coefficient
Element-wise Sparse kﬁ"ﬁﬁi_ioi\;vtRi;niI; 777777777777777777777777777777777777777777777777777777777777777
Model Component Component
W Q P
min ZL (X (P + Q),yp) + Allall,
Convex formulation

subject to ||Pl, <
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Robust Low-Rank in MTL

Chen et. al. 2011 KDD

e Simultaneously perform low-rank MTL and identify outlier
tasks.

Identify irrelevant tasks Capture task relatedness

************************************************************************************

= + = basis X coefficient
Outlier '
Low-Rank
Model Group Sparse Tasks
W Component Component

Q P
m
nlzl,lgl 2[,1 (Xl(Pl + Qi)iYi) + (X”P”* +ﬂ||QT”1q
=1
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Summary

 All multi-task learning formulations discussed
above can fit into the W=P+Q schema.

— Component P: shared structure

— Component Q: information not captured by the
shared structure

Embedded Feature

Selection Shared Structure P ComponentQ

L1/Lq Feature Selection (L1/Lq Norm) O

Dirty Feature Selection (L1/Lq Norm) L1-norm

rMTFL Feature Selection (L1/Lq Norm) Outlier (column-wise L1/Lg Norm)
Low-Rank Subspace

Learning

Trace Norm Low-Rank (Trace Norm) 0

ISLR Low-Rank (Trace Norm) L1-norm

ASO Low-Rank (Shared Subspace) L2-norm on independent comp.
RMTL Low-Rank (Trace Norm) Outlier (column-wise L1/Lq Norm)

147 MICHIGAN STATE UNIVERSITY



Multi-Task Learning with Clustered
Structures

* Most MTLtechniquesassume
all tasks are related J—

* Not true in many applications

e Clustered multi-task learning
assumes

% thetasks havea group
structure

* the models of tasks from the ] )
same group are closer to each \\“A‘s‘;i;};.;tion: e
otherthan those fro m a Tasks have group structures

different group

L)
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Clustered Multi-Task Learning

Jacob et. al. 2008 NIPS, Zhou et. al. 2011 NIPS

e Use regularization to capture clustered structures.

________________________________________________________________

Clustered Models

I]I R
J \\

Y Y /
Cluster 1 Cluster 2 Cluster k-1 Cluster k

. ” .~
4,
| ! 9 . ’ [}
| | . . [} ]
/WI ] \ | )
' [} . ’
T ! Cluster 1. : Y el . e
o IR e H e . -
| - \ Q4 S
| ‘ [y .
| ! . .
| A} [}

.

~~~~~~
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Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS
e Capture structures by minimizing sum-

. m tasks
of-square error (SSE) in K-means —A —
clustering:
000
mln E E ”Wv W]”
] 11)6] — Y__J\ __1 ——
Cluster 1 Iuster2 Cluster k-1 Cluster k
I;index set of jth cluster “Clustered Models o cusers
Clustgr,l ...... . OO -------
o O = L0/
00 G e
R O ,o"';:Iusterk

Seanen

task number m > cluster number k

min tr(WIW) — tr(FTWTWF)

F : m X k orthogonal cluster indicator matrix
F;; =1/ /njifi € I; and 0 otherwise
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Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS
* Directly minimizing SSE is hard

. . m tasks
because of the non-linear constraint ——A———
on F:
mFin tr(WTW) —tr(FTWTWF)
F : m X k orthogonal cluster indicator matrix Cluster 1  Cluster2  Cluster k-1 Cluster k
F;=1/ \/W] if i € I; and O otherwise C|ustered|V|Ode|S'_,---d-\\CIusterZ 7777777777777777777
e O
Spectral Relgxation o = 2
HE Z O O O Cluster k-1
---------- ’ O__ __,o"';llusterk
min tI‘(WTW) _ tr(FTWTWF) task number m > cluster number k

F:FTF=I,

Zha et. al. 2001 NIPS
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Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS

e Clustered multi-task learning (CMTL) formulation

min  Loss(W) +
W,F:FTF=I,

altrWTW) —tr(FTWTWF)]
capture cluster structures

~~~~~~~~ Cluster 2

7O
Cluster 1.___ : b eeeen,
. ™ | ! O
. ’
L) . 'l
kY O o eee !
[} Seatoeet e MY !
O : ;
. O """""" " .......
Y O ----- ‘ CIusterkl
O
---------- = Clusterk

-------

_|_

Btr(WTw)
Improves
generalization
performance

* CMTL has been shown to be equivalent to another class of

MTL called ASO

— Giventhe dimension ofthe shared low-rank subspacein ASO and the
cluster numberin clustered multi-task learning (CMTL) are the same.
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Convex Clustered Multi-Task Learning

Zhou et. al. 2011 NIPS

Ground Truth Mean Regularized MTL

noise introduced
1 T by relaxations
£ =2l Low rank can also

——++well capture
: it
cluster structure

Trace Norm Regularized Convex Relaxed CMTL
MTL
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Modeling Disease Progression via Multi-Task Learning

Multi-Task Learning Application
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LEADING ACTRESS ."" o SIS SUORY FYWEvRe BEST ACTRESS ACADEMY
JULIANNE MOORE ) $W| N N E R JULIANNE MOORE A8,

‘JULIANNE MOORE GIVES A
SENSITIVE, SHATTERING AND
BRILLIANT PERFORMANCE"

‘AN EFFORTLESSLY
EXCELLENT FILM®

1. 2.8.0.0.00 8. 0.0 0 ¢
‘EXTREMELY MOVING®

STILL
ALICE

JULIANNE MOORE ALECBALDWIN KRISTEN STEW
1+ & RICHARD GLATZER - WASH WESTMORE|

e “ps s |
1 “,? y
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Alzheimer's disease

Also called: senile dementia

ABOUT SYMPTOMS

156

Memory loss

A progressive disease that destroys memory and other important mental

functions.

Very common
More than 3 million US cases per year

E Requires a medical diagnosis
&} Lab tests or imaging not required

Chronic: can last for years or be lifelong

Consult a doctor for medical advice
Sources: Mayo Clinic and others.

TREATMENTS
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Background (cont.)

* NIH in 2003 funded the Alzheimer’s Disease
Neuroimaging Initiative (ADNI), facilitating a public
available database for using neuroimaging data in
predicting the progression of AD.

AD Converter

© ® o 9
© o ® oo

e ®
® Normal ° Normal

AD
o

© o
..

® o Non-converter
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Disease Progression

 Clinical scores are

used to evaluate the Features (x) Labels (y)
cognitive status LI
— MMSE, ADAS-Cog

and etc.

* Disease progression

— Prediction of clinical
scores from
neuroimaging
features

— Build one regression
model at each time
point.

o

Year 2\

Year 3
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Disease Progression (cont.)

Disease progression as machine learning tasks

— Build one regression model at each time point.

Regression minimize: L(V) =[l(xXW - )|

Input
Features
Feature Space: d

Output

Predictions
Task (Time Point): t=5

Model
Parameters
Task (Time Point): t=5
c
é el
joN
S g £
2 g 3
o €
2
=
(©
a
& & & & & &8 %
S D O B D, 3
S, "b/,.) "0///.) J‘Q//)) J‘Q/,_) J‘/O ’é 4, @ ¢’ @O
Cp Op Op Cp Op L O % s g g %
D B B B %,
% %, 9% %
@ o/’ zﬁ (//‘ o/' /e
® o, o, o e ®
7 < 4 b4 S o
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Model |: Temporal Group Lasso (TGL)

1in L(W)

_|_

Oy |V

_|_

_—

Loss Function
Performs

regression
L(W) =[(XW - Y)|%

Feature Space: d

Patient Sample: n
Removeri Fearure

160

Prevent Overfitting

N\

Improves
generalization
performance

Task (Time Point): t

W

Re

TnoveF Fearure

Relnove}i Fez+ure

Feature Size: d

Removepl Feature

Patient Sample: n

Cognitive Score
o
©

%, @

Task (Time Point): t

2
O [WH| 0 Wy,

\ \
Temporal Group Sparse
Smoothness Models at different
For each feature, time points share
the change of the same set of
parameters is features

2 %
1, 1, 1, 1,

O, (o) O, (o)
2 % g %
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smooth over time

[
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Feature Size: d

Model ll: Fused S

parse Group Lasso (FSGL)

min|L(W)

W

Wl

Ao [[EWT s T,

LOSS Function Element-wise Sparse

Improves generalization
performance

Performs
regression

Temporal Group Lasso

Task (Time Point): t

/

Fused Sparse Group Lasso

Task (Time Point): t

Iy

R

Feature Size: d

N\

Sparse Temporal
Smoothness via
Fused Lasso

For each feature
parameter, the
change of values and
sparse pattern of
parameters is smooth
over time

Group Sparse
Models at different
time points share
the same set of
features
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Optimization Algorithm

* Objective is convex but non-smooth

— Objective is smooth + non-smooth composite
— Projected gradient/accelerated projected gradient
— Key: proximal operator (Euclidean projection)

1
(V) = arg mvén§||W — V7 + MW+ X |RW 1 + A3 ||[W]|2.1
Can be decomposed into
two simpler problems
and solved efficiently

1
FL(v) = argmin §|IW — V|2 + MWl + Az||[Rw|l (5)

!
maL(v) = argmin 5 [[w — |2 + As[[w 2. (6)

Then the following holds:

m(v) = meL(7FL(V)). (7)
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Performance

* Use baseline MRI feature to predict future MMSE score

* Average performance over 10 iterations
M48

MMSE

MO6 M12 M24 M36

B Ridge M lasso W TGL M FSGL

4.5

35

w

2.

€]

N

1.

(6]
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Performance (cont.)

« Use baseline MRI feature to predict ADAS-Cog score
« Average performance over 10 iterations

ADAS-Cog

MO6 M12 M24 M36 M43

M Ridge Mlasso WTGL M FSGL

7.5

~

6.

€]

[e)}

5.

€]

(%]

4.

]

IN
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MALSAR: Multi-Task Learning via Structural Regularization

Multi-Task Learning Software
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MALSAR

MULTI-TASK LEARNING VIA STRUCTURAL REGULARIZATION

MAI_SAR ® © ® | O)jiayuzhouwMALSAR =<\

\ulti-Task Learning via Structural Regularization € - C A [ GitHub, Inc. [US]| https//github.com/jiayuzhow/MALSAR

O This repository Search Explore Gist Blog Help B iia

jlayuzhou / MALSAR @ Unwatch~ 2

Multi-task learning via Structural Regularization — Edit

11 commi ts 2 branches 0 releases 1 contributor

.
{» branch: master~  MALSAR / + =

Add mac binaries for calibration

S v y B iiayuzhou autnored 24 days ago latest commit 5441cS4ddd [

B MALSAR Add mac binaries for calibration 24 days ago

B data Init Commit for version 1.1 4 months ago

8 examples Fix a bug to use tr to build model. a month ago

B8 manual Init Commit for version 1.1 4 months ago

[® .gitignore Update gitignore. 3 months ago

& .project Init Commit for version 1.1 4 months ago

Learning Formulations Efficient Optimization Fully Customizable B COPYRIGHT I T OEETTETD

MALSAR includes many state-of-the-art MALSAR uses first order optimization Got novel formulations? Fork MALSAR on B INSTALL.m Adding Pacifier-IBA/SBA 3 months ago

multi-task learning formulation to start solversand is capable of solving large Github and build your own branch now! B LICENSE Initial commit 9 months ago
with. scale problems.

[E README.md

Update README.md S ago

* Firstly introduced my MTL tutorial at SDM in 2012

* Over 40 research works using MALSAR are published in KDD, NIPS, TPAMI,
ICCV, ICDM, ICIP, COLING, MICCAI, ACM-MM, etc.

« Used as course material to analyze compound profiling in the Strasbourg
Summer School in France

« A core component in the $11mi NIH-BD2K grant
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Some MTL Algorithms in MALSAR

 Mean-Regularized Multi-Task Learning

« MTL with Embedded Feature Selection

— Joint Feature Learning

— Dirty Multi-Task Learning

— Robust Multi-Task Feature Learning
« MTL with Low-Rank Subspace Learning

— Trace Norm Regularized Learning

— Alternating Structure Optimization

— Incoherent Sparse and Low Rank Learning

— Robust Low-Rank Multi-Task Learning
» Clustered Multi-Task Learning [ frTem—
° Graph Regularized € > C A |A GitHub, Inc. [US]|https://github.com/jiayuzhou/\
« Many more... GitHub s esosion see

jiayuzhou / MALSAR
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® © ®  ()mALsAR/example Dinty.m x ""-Q \
€ - C f |8 GitHub, Inc. [US]|https://github.com/jiayuzhou/MALSAR/blob/mas.

An Example =

49

Create a random MTL wd
dataset :

Invoke an MTL algorithm

clear;
clc;
close;

addpath('../MALSAR/functions/dirty/'); % load function
addpath('../MALSAR/c_files/prf_1bm/'); % load projection ¢ libraries.
addpath('../MALSAR/utils/'); % load utilities
%rng('default'); % reset random generator. Available from Matlab 201
%generate synthetic data.
dimension = 508;
sample_size = 58;
task = 50;
X = cell(task ,1);
Y = cell(task ,1);
for 1 = 1: task
X{i} = rand(sample_size, dimension);
Y{i} = rand(sample_size, 1);
end
opts.init = @; % guess start point from data.
opts.tFlag = 1; % terminate after relative objective value does not
opts.tol = 10*-4; % tolerance.
opts.maxIter = 500; % maximum iteration number of optimization.

rho_1
rho_2

350;%
10;%

rhol: group sparsity regularization parameter
rho2: elementwise sparsity regularization parameter

[W funcval P Q] = Least_Dirty(X, Y, rho_1, rho_2, opts);
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Thanks!
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