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Mining High-Dimensional Data
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Dimensionality Reduction
• Dimensionality reduction algorithms

– Feature Extraction
– Feature Selection
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features

Original data

Data
points

reduced
data

new features

SIAM Data Mining 2007 Tutorial (Yu, Ye, and Liu):
“Dimensionality Reduction for Data Mining - Techniques, Applications, and Trends” 



Sparse Learning

• We focus on sparse learning in this tutorial
– Embed dimensionality reduction into data 

mining tasks
– Flexible models for complex feature structures
– Strong theoretical guarantee
– Empirical success in many applications
– Recent progress on efficient implementations
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What is Sparsity

• Many	data	mining	tasks	can	be	represented	using	a	vector	or	
a	matrix.

• “Sparsity”	implies	many	zeros	in	a	vector or	a	matrix.
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Human Anatomy
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Anatomy Lesson of Dr. Nicolaes Tulp by Rembrandt van Rijn, 1632.



Biomedical Imaging
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1901 Nobel Prize in 
Physics

Wilhelm Röntgen's

X-Ray,1895



Biomedical Imaging
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1979 Nobel Prize in 
Physiology or Medicine
Allan M. Cormack and 
Godfrey N. Hounsfield

1901 Nobel Prize in 
Physics

Wilhelm Röntgen's

X-Ray,1895 Computed Tomography 
(CT), 1967



Biomedical Imaging
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1979 Nobel Prize in 
Physiology or Medicine
Allan M. Cormack and 
Godfrey N. Hounsfield

1901 Nobel Prize in 
Physics

Wilhelm Röntgen's

2003 Nobel Prize in 
Physiology or Medicine
Paul Lauterbur and Sir 

Peter Mansfield

X-Ray,1895 Computed Tomography 
(CT), 1967

Magnetic Resonance 
Imaging (MRI), 1971



Magnetic Resonance Imaging
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Structural

Diffusion

Functional



Magnetic Resonance Imaging (cont.)
• Acquire a digital object               from n

measurements: 

– Waveforms        : Sinusoids
• y is a vector of Fourier coefficients (e.g., MRI)                        

• Recover the object from the measurements
– Sovling a linear system of equations
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Magnetic Resonance Imaging (cont.)
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Compressive Sensing

• Is accurate reconstruction possible from 
n<<p measurements only?
– Few sensors
– Measurements are very expensive
– Sensing process is slow
– Save lives
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Motivation: Signal Acquisition

• Conventional wisdom: reconstruction is 
impossible
– Number of measurements must match the number of 

unknowns  
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If n<<p, the system is underdetermined.

y

n×1 measurements

p×1 signal

x



Generalization: Signal Acquisition
• Wish to acquire a digital object               from n

measurements: 

• Waveforms
– Dirac delta functions (spikes)

• y is a vector of sampled values of x in the time or space 
domain

– Indicator functions of pixels
• y is the image data typically collected by sensors in a digital camera

– Sinusoids
• y is a vector of Fourier coefficients (e.g., MRI)                        
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Motivation: Signal Acquisition (cont.)

• Many natural signals are sparse or compressible 
in the sense that they have concise 
representations when expressed in the proper 
basis

Megapixel image represented as 2.5% largest wavelet coefficients
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(Candes and Wakin, 2008)



MRI by Compressive Sensing
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Sparsity
• Dominant modeling tool

– Genomics
– Genetics
– Signal and audio processing
– Image processing
– Neuroscience (theory of sparse coding)
– Machine learning
– Data mining
– …

20



Sparsity in Data Mining

• Regression,	classification,	collaborative	
filtering…

21

y

Label

Model

x

Data Matrix 
(Design Matrix)
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Convex Sparse Learning Models 

23

• Let x be the model parameter to be estimated. A 
commonly employed model for estimating x is

min  loss(x) + λ×penalty(x) (1)

• (1) is equivalent to the following model:

min  loss(x)
s.t.    penalty(x) ≤  z (2)



Convex Sparse Learning Models 
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• Let x be the model parameter to be estimated. A 
commonly employed model for estimating x is

min  loss(x) + λ×penalty(x) (1)

– Sparsity via L1

– Sparsity via L1/Lq

– Sparsity via Fused Lasso
– Sparse Inverse Covariance Estimation
– Sparsity via Trace Norm



The L1 Norm Penalty
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min  loss(x) + λ ||x||1

min  loss(x) + λ ||x||0



The L1 Norm Penalty

• penalty(x)=||x||1=∑i|xi|

– Valid norm
– Convex
– Computationally tractable
– Sparsity induced norm
– Theoretical properties
– Various Extensions
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min  loss(x) + λ ||x||1

min  loss(x) + λ ||x||0



Why does L1 Induce Sparsity?
Analysis in 1D (comparison with L2)
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0.5×(x-v)2 + λ|x| 0.5×(x-v)2 + λx2

Nondifferentiable at 0 Differentiable at 0

If v≥ λ,  x=v- λ
If v≤ -λ, x=v+λ
Else,      x=0

x=v/(1+2 λ)



Why does L1 Induce Sparsity?

• Understanding from the projection

28

min loss(x)
s.t. ||x||2 ≤1

min 0.5||x-v||2
s.t. ||x||2 ≤1

min loss(x)
s.t. ||x||1 ≤1

min 0.5||x-v||2
s.t. ||x||1 ≤1

Sparse



Why does L1 Induce Sparsity?
• Understanding from constrained optimization
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(Bishop, 2006, Hastie et al., 2009)



Lasso (Tibshirani, 1996)
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…
= × +

y A z

n×1 n×p n×1

Simultaneous feature selection and regression



Application: Face Recognition
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(Wright et al. 2009)

test image training images

…

×…

Use the computed sparse coefficients for classification



Application: Biomedical Informatics
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(Sun et al. 2009)

Elucidate a Magnetic Resonance Imaging-Based  Neuroanatomic Biomarker for Psychosis



From L1 to L1/Lq (q>1)?

33

L1

L1/Lq
L1/Lq

Most existing work focus on q=2, ∞

q norm

q norm

q norm

1 norm

,1 iGq q
i

X X=∑



Group Lasso (Yuan and Lin, 2006)
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Group Feature Selection
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brain region functional group categorical 
variable

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

A
T
C
G

group



Multi-Task/Class Learning via L1/Lq
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Writer-specific Character Recognition

• Letter data set: 
– The letters are from more than 180 different writers
– It has 8 tasks for discriminating letter c/e, g/y, g/s, m/n, a/g, i,/j, a/o. f/t, and h/n
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(Obozinski, Taskar, and Jordan, 2006)

The letter ‘a’ written by 40 different people



Fused Lasso
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Application: Arracy CGH Data Analysis

• Comparative genomic hybridization (CGH)
• Measuring DNA copy numbers of selected genes on 

the genome
• In cells with cancer, mutations can cause a gene to 

be either deleted or amplified
• Array CGH profile of two chromosomes of breast cancer 

cell line MDA157. 
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(Tibshirani and Wang, 2008)



Sparse Inverse Covariance Estimation
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The pattern of zero entries in the inverse covariance matrix of a 
multivariate normal distribution corresponds to conditional 

independence restrictions between variables.

Undirected graphical model 
(Markov Random Field)



The SICE Model
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Log-likelihood

When S is invertible, directly maximizing 
the likelihood gives

X=S-1



Network Construction
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Equivalent matrix representation

§Biological network
§Social network
§Brain network

Sparsity: Each node is linked to a small 
number of neighbors in the network. 



Matrix Completion

• Predict the missing values
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The Netflix Problem

• About a million users and 25,000 movies
• Known ratings are sparsely distributed
• Predict unknown ratings
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44
Preferences of users are determined by a small number of factors à low rank

Users

Movies
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?



Low Rank Matrix Completion
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Matrix Rank
• The number of independent rows or columns
• The singular value decomposition (SVD):

46

= × ×

}rank



Optimization
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Gradient Descent for the Composite Model
(Nesterov, 2007; Beck and Teboulle, 2009)

min  f(x)= loss(x) + λ×penalty(x)

1st order Taylor expansion Regularization Nonsmooth part

Repeat

Until “convergence”

Convergence rate



First Order Optimization

• FISTA, SpaRSA
• How to efficiently solve the proximal operator problem?
• Closed-form solution for L1, L1/L2, analytical form for 

trace norm  
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Second Order Optimization

• How to efficiently solve the above subproblem?
– Coordinate Descent, FISTA, SpaRSA

50



Stochastic Optimization
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Non-convex Sparse Models
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L1
CapL1
LSP
MCP
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and         may not be convex

Ref. J. Fan (2001, 2012), H. Zou (2008), X. Shen (2012)
T. Zhang (2010,2012), C.H. Zhang (2010)



Different Non-convex Penalties
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Non-convex Models: Advantages
• Better approximation of L0-norm: reduce over-

penalization
• Theoretical advantages of non-convex sparse 

learning models over the convex ones
– Unbiased feature selection
– Weak conditions to achieve oracle properties
– Sharp parameter estimation bound

• Computational Challenges

55

Ref. J. Fan (2001, 2012), H. Zou (2008), X. Shen (2012)
T. Zhang (2010,2012), C.H. Zhang (2010)



Example: Non-convex MTL Model
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Ⅰ

Ⅱ

Joint feature selection

Shared features + Task specific Features

Non-convex

Pinghua Gong, Jieping Ye, Changshui Zhang. Multi-Stage Multi-Task Feature Learning. NIPS 2012.



Optimization Algorithm
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MSMTFL: Multi-Stage Multi-Task Feature Learning

repeat

penalize small rows

reweighted Lasso



Parameter Estimation Error Bound
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Exponential shrinkage & stage-wise Improvement

Lasso:

MSMTFL:



A General Solver
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Multiple times of solving convex sub-problems!!

Convex       Sub-problem

The convex sub-problem usually doesn’t have a 
closed-form solution!!

• Difference of Convex Programming



GIST: General Iterative Shringkage and 
Thresholding for Non-convex Problems
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Proximal 
Operator

Closed-form solution: Capped L1, LSP, SCAD, MCP Non-convex

Pinghua Gong, Jieping Ye, Changshui Zhang. A General Iterative and Shrinkage Thresholding
Algorithm for Non-convex Regularized Problems. ICML 2013.



Step Size Selection
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Ø Initialization: Barzilai-Borwein (BB) rule 

Ø Line Search: Monotone & Non-monotone 

m=1: Monotone;  m>1: Non-monotone

Where              is a constant



Assumptions
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p A1:         is continuously differentiable with    
Lipschitz continuous gradient

p A2:          is a continuous function with 
difference  of two convex functions:  

p A3:          is bounded from below



Example
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L1
CapL1
LSP
MCP
SCAD

Least Squares:

Logistic Regression:

Squared Hinge Loss:

Non-convex 
Regularizer



Convergence Analysis
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Theorem 1: Let the assumptions A1-A3 hold and the 
monotone/Non-monotone line search criterion in be satisfied. 
Then all limit points of the sequence          generated by GIST 
are critical points.

Theorem 2: Let the assumptions A1-A4 hold and the 
monotone/non-monotone line search criterion be satisfied. 
Then the sequence          generated by GIST has at least one 
limit point.



Evaluation: Convergence
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Evaluation: Recovery Performance

66



Software: GIST
GIST: A Non-Convex Sparse Learning Package

• Loss functions:
• The least squares loss
• The logistic loss
• The squared hinge loss (L2 SVM loss)

• Non-convex Regularizers:
• LSP
• SCAD
• MCP
• Capped L1
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Proximal Alternating Linearized 
Minimization (PALM) [Bolte et. al. 2013]

Let w = (u,v),l(w) = l(u,v),r(w) = r1(u)+ r2 (v)
minw{l(w)+ r(w)} ⇔ minu,v f (u,v) = l(u,v)+ r1(u)+ r2 (v){ }
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Quasi-Newton Method [Rakotomamonjy et. al. 2015]

 minw∈!n f (w) = l(w)+ r(w){ }

 

l̂ (w), !l (w), r̂(w), !r(w) are convex functions (l̂ (w) and !l (w) are 
differentiable but r̂(w) and !r(w) are typically not)

 

Approximate l̂ (w) using the second-order information and 

approximate !l (w), r̂(w), !r(w) using the first-order information
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Quasi-Newton Method [Rakotomamonjy et. al. 2015]

p The cost of solving the regularized QP sub-problem is high!
p Avoid solving the QP sub-problem at each iteration (HONOR, 2015).
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HONOR: Hybrid Optimization for Non-convex 
Regularized problems [Gong and Ye, NIPS 2015]

 minw∈!n f (w) = l(w)+ r(w){ }

 

A1: l(w) is coercive, continuously differentiable and ∇l(w)is Lipschitz
      continuous with constant L. Moreover, l(w) > −∞,∀w∈!n .

A2 :r(w) = ρ
i=1

n

∑ (|wi |),where ρ(t) is non-decreasing, continuously differentiable

      and concave with respect to t  in [0,∞);ρ(0) = 0 and ρ′ (0) ≠ 0 with 
      ρ′ (t) = ∂ρ(t) / ∂t  denoting the derivative of ρ(t)at the point t.
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Examples: Non-convex Regularizers

 minw∈!n f (w) = l(w)+ r(w){ }

LSP: ρ(|wi |) = λ log(1+ |wi | /θ )

SCAD: ρ(|wi |) =

λ |wi |, if  |wi |≤ λ,

−wi
2 + 2θλ |wi | −λ 2

2(θ −1)
, if  λ <|wi |≤θλ,

(θ +1)λ 2 / 2, if  |wi |>θλ.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

MCP: ρ(|wi |) =
λ |wi | −wi

2 / (2θ ), if  |wi |≤θλ,

θλ 2 / 2, if  |wi |>θλ.

⎧
⎨
⎪

⎩⎪
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Mining Second-Order Information
• Obtain a direction using second-order information
dk = argmin

d∈!n
f (wk )+ ◊f (wk )T d+ 1

2
dT Bkd

#
$
%

&
'
(
= −Hk◊f (wk )

   

H k = (Bk )−1, ◊ i f (w) =

∇il(w)+ ρ′ (| wi |), if  wi > 0,

∇il(w)− ρ′ (| wi |), if  wi < 0,

∇il(w)+ ρ′ (0), if  wi = 0, ∇il(w)+ ρ′ (0) < 0,

∇il(w)− ρ′ (0), if  wi = 0, ∇il(w)− ρ′ (0) > 0,

0, otherwise.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

   p
k = π (dk ;v k ), where v k = −◊f (wk )

L-BFGS

: projection operation that keeps y and x in the same orthant
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HONOR: Hybrid Strategy

• Hybrid Strategy: QN-step or GD-step

• QN-step:

• GD-step:

   w
k (α ) = π (wk +αpk ;wk )

 
wk (α )← argminx ∇l(wk )T (w −wk ){ + 1

2α
‖w −wk‖2 +λ‖w‖1

⎫
⎬
⎭

Line search (QN):  f (wk (α )) ≤ f (wk )−γα (v k )T dk

 
Line search (GD):  f (wk (α )) ≤ f (wk )− γ

2α
‖wk (α )−wk‖2

   I
k = {i ∈{1,!,n} :0 <|wi

k |≤min(‖v k‖,ε),wi
kvi

k < 0}
Empty Non-

empty
QN-step GD-step

74



Why Hybrid Strategy
• The optimization problem is non-smooth
• The operation of projection a vector back 

to the previous orthant is not easy to 
handle

• The key difficulty: if there exists a 
subsequence    such that    converges 
to zero, it is possible that for a large 
enough             is arbitrarily small 
but is never equal to zero.

 K    {xi
k}

K

   k ∈K,  | xi
k |
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Experiments (LSP)
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Experiments (MCP)
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Experiments (SCAD)
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Matrix Completion

Image
Inpainting

Microarray	
data	

imputation

Collaborative	
filtering

Video
Recovery

Matrix Completion 



Image Recovery

• Recover the original image with partial observation



Collaborative Filtering

• Customers are asked to rank items
• Not all customers ranked all items
• Predict the missing rankings (98.9% is missing)

Customers

Items
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?



The Netflix Problem

• About a million users and 25,000 movies
• Known ratings are sparsely distributed

Users

Movies
? ? ? ? ? ? ? ?

? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?

? ? ? ? ? ? ?
? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ? ?
? ? ? ? ? ? ? ?

Preferences of users are determined by a small number of factors à low rank



Matrix Rank
• The number of independent rows or columns
• The singular value decomposition (SVD):

= × ×

}rank



Low Rank Matrix Completion

with the projection operator defined as:

• Low rank matrix completion with incomplete observations can 
be formulated as: 

(Y)(X)
(X)

..
min
X

ΩΩ = PP
rank

ts

PΩ(X) =
xij (i, j)∈Ω

0 (i, j)∉Ω

⎧

⎨
⎪

⎩
⎪



Other Low-Rank Problems

• Multi-Task/Class Learning
• Image compression
• Foreground-background separation problem in computer 

vision
• Low rank metric learning in machine learning
• Other settings:

– System identification in control theory
– low-degree statistical model for a random process
– a low-order realization of a linear system
– a low-order controller for a plant
– a low-dimensional embedding of data in Euclidean space



Two Formulations for Rank Minimization

min   loss(X) + λ*rank(X) min              rank(X)
subject to    loss(X)≤ ε

Rank minimization is NP-hard

2(Y)(X)
2
1)(loss

F
PPX ΩΩ −=



Trace Norm (Nuclear Norm)

• trace norm ⇔ 1-norm of the vector of singular values
• trace norm is the convex envelope of the rank function 

over the unit ball of spectral norm ⇒ a convex relaxation



Two Convex Formulations

min   loss(X) + λ×||X|| min              ||X||
subject to    loss(X)≤ ε

Trace norm minimization is convex

* *

• Can be solved by semi-definite programming
• Computationally expensive

• Recent more efficient solvers: 
• Singular value thresholding (Cai et al, 2008 )
• Fixed point method (Ma et al, 2009)
• Accelerated gradient descent (Toh & Yun, 2009, Ji & Ye, 2009)



Trace Norm Minimization

• Trace norm convex relaxation

min
X

s.t.

X *

PΩ(X) = PΩ(Y)
min
X

1
2
PΩ(X)− PΩ(Y) F

2 + λ X *

Can be solved by 
• sub-gradient method
• the proximal gradient method 
• the conditional gradient method
Convergence speed: sub-linear

Ref: 1. Candes, E. J. and Recht, B. Exact matrix completion via convex optimization. Foundations of Computational Mathematics, 9(6):717–772, 2009.
2. Jaggi, M. and Sulovsky, M. A simple algorithm for nuclear norm regularized problems. In ICML, 2010.

Iteration: truncated SVD or top-SVD (Frank-Wolfe)

noisy case



Gradient Descent for the Composite Model
(Nesterov, 2007; Beck and Teboulle, 2009)

min  f(x)= loss(x) + λ×penalty(x)

1st order Taylor expansion Regularization Nonsmooth part

Repeat

Until “convergence”

Convergence rate



Proximal Operator Associated with Trace Norm

Associated proximal operator 

Closed form solution: 

Optimization problem



A Non-convex Formulation via Matrix 
Factorization

TUVX =

r
nn

m
m

r

• Rank-r matrix X can be written as a product of 
two smaller matrices U and V

)VU(
2
1minX 22

UVX* FFT
+=

=



Alternating Optimization

Non-convex

• Can be solved via
• Alternating minimization (Jain et al, 2012) 

)VU(
2
1(Y))(UVmin 222

VU, FFF

T PP ++− ΩΩ



Theoretical Result

• Under certain condition with proper initialization, 
alternating optimization algorithm guarantee 
geometric convergence.

min
U∈Rm×k ,V∈Rn×k

PΩ(UV
T )− PΩ(Y) F

2

Vt+1 = argmin
V∈Rn×k

PΩt+1
(UtV

T −Y)
F

2

Ut+1 = argmin
U∈Rm×k

PΩT+t+1
(UVt+1

T −Y)
F

2



Practical Algorithm

• The Lagrangian function can be solved by 
alternating optimization method.

• Weak convergence guarantee

L = UVT − Z
F

2
− Λ •PΩ(Z−Y)

min
U,V,Z

s.t.

UVT − Z
F

2

PΩ(Z) = PΩ(Y)



Robust Matrix Completion

• The robust matrix completion problem can be 
solved by augmented Lagrangian alternating 
direction method.

• Weak convergence guarantee

min
U,V,Z

s.t.

PΩ(Z−Y) 1
UVT − Z

L = PΩ(Z−Y) 1 + Λ,UVT − Z + β
2
UVT − Z

F

2



Summary of Two Approaches
• Trace norm convex relaxation
min
X

s.t.

X
*

PΩ(X) = PΩ(Y)
min
X

PΩ(X)− PΩ(Y) F

2 + λ X *

noisy case

• Bilinear non-convex relaxation

min
U,V

PΩ(UV
T )− PΩ(Y) F

2

X = UVT

r
nn

m m
r

PΩ(X) =
xij (i, j)∈Ω

0 (i, j)∉Ω

$

%
&

'
&

Projection operator: 



Rank-One Matrix Space

X θiMi
i∈I
∑

X = σ iuivi
T

i=1

r

∑

Rank-one matrices with unit norm as Atoms

M∈ℜn×m

SVD

M = uvT u∈ℜn v∈ℜmfor



Matrix Completion in Rank-One Matrix Space

min
θ∈ℜI ,{Mi}

s.t.

θ
0

PΩ(X(θ )) = PΩ(Y)

with the estimated matrix in the rank-one matrix space as

• Matrix completion in rank-one matrix space

X(θ ) = θiMi
i∈I
∑

We solve this problem using an orthogonal matching 
pursuit type greedy algorithm. The candidate set is an 
infinite set composed by all rank-one matrices M∈ℜn×m

min
X(θ )

s.t.

PΩ(X(θ ))− PΩ(Y)
2

F

θ 0 ≤ r

• Reformulation in the noisy case



Vector Case: Compressive Sensing

• When data is sparse/compressible, can directly acquire a 
condensed representation

measurements
sparse
signal

nonzero
entries



Convex Formulation for Recovery

¨ Signal recovery via   optimization  
[Candes, Romberg, Tao; Donoho]

random 
measurements

sparse
signal

nonzero
entries



Greedy Algorithms

¨ Signal recovery via iterative greedy algorithms
¤ (orthogonal) matching pursuit   [Gilbert, Tropp]
¤ iterated thresholding [Nowak, Figueiredo; Kingsbury, Reeves; Daubechies, 

Defrise, De Mol; Blumensath, Davies; …]
¤ CoSaMP [Needell and Tropp]

random 
measurements

sparse
signal

nonzero
entries



Greedy Recovery Algorithm (1)

• Consider the following problem

• Can we recover the support?
– 1-Sparse (only one support)
– K-Sparse 

sparse
signal

1 sparse



Greedy Recovery Algorithm (2)

• If
then                              gives the support of x

• How to extend to K-sparse signals?

sparse
signal

1 sparse

� = [�1,�2, . . . ,�N ]

argmax | h�i, yi |



Greedy Recovery Algorithm (3)

sparse
signal

K sparse

r = y � �bxk�1Residue:

Find atom: k = argmax | h�i, ri |
Add atom to support: S = S

[
{k}

Signal estimate 
xk = (�S)

†
y



Orthogonal Matching Pursuit

Update residual

Find atom with largest support

Update signal estimate

goal:

given y = �x, recover a sparse x

columns of � are unit-norm

initialize: bx0 = 0, r = y,⇤ = {}, i = 0

iteration:

� i = i+ 1

� b = �

T
r

� k = argmax{|b(1)|, |b(2)|, . . . , |b(N)|}

� ⇤ = ⇤

S
k

� (bxi)|⇤ = (�|⇤)
†
y, (bxi)|⇤c

= 0

� r = y � �bxi

Baraniuk et al., 2012



Orthogonal Rank-One Matrix Pursuit for Matrix 
Completion

• Matrix completion in rank-one matrix space

X(θ ) = θiMi
i∈I
∑

We solve this problem using an orthogonal matching pursuit type 
greedy algorithm. The candidate set is an infinite set composed by all 
rank-one matrices.

min
X(θ )

s.t.

PΩ(X(θ ))− PΩ(Y)
2

F

θ 0 ≤ r



Rank-One Matrix Basis

[u*,v*] = argmax
u =1, v =1

R,uvT = uT Rv

All rank-one matrices

Top-SVD

Infinite size

R< >,

R = YΩ- XΩ

with residual matrix

is selected from all rank-one matrices with unit norm.M = u*v*
T

Step 1: basis construction

M = u*v*
T



Rank-One Matrix Pursuit Algorithm
Step 1: construct the optimal rank-one matrix basis

[u*,v*] = argmax
u,v

(Y−Xk )Ω,uv
T Mk+1 = u*v*

T

θ k = argmin
θ∈ℜk

θiMi
i
∑ −Y

Ω

2

This is the top singular vector pair, which can be solved efficiently by power method.

This is a least squares problem, which can be solved incrementally.

This generalizes OMP with infinite dictionary set of all rank-one matrices M∈ℜn×m

Step 2: calculate the optimal weights for current bases



Linear Convergence

Rank-One Matrix Pursuit for Matrix Completion

(Jaggi & Sulovský, 2010; Dud́ık et al., 2012). The new
rank-one basis matrix Mk is then readily available by
setting Mk = u⇤v

T
⇤ .

After finding the new rank-one basis matrix Mk, we
update the weights ✓k for all currently available basis
matrices {M

1

, · · · ,Mk} by solving the following least
squares regression problem:

min
✓2<k

||
kX

i=1

✓iMi �Y||2
⌦

. (6)

By reshaping the matrices (Y)
⌦

and (Mi)⌦ into vec-
tors ẏ and ṁi, we can easily see that the optimal so-
lution ✓k of (6) is given by

✓k = (M̄T
kM̄k)

�1M̄T
k ẏ, (7)

where M̄k = [ṁ
1

, · · · , ṁk] is the matrix formed by
all reshaped basis vectors. The row size of matrix M̄k

is the total number of observed entries. It is compu-
tationally expensive to directly calculate the matrix
multiplication. An incremental update rule can be ap-
plied to solve this step e�ciently (Wang et al., 2014).

We run the above two steps iteratively until some de-
sired stopping condition is satisfied. We can terminate
the method based on the rank of the estimated matrix
or the approximation residual. In particular, one can
choose a preferred rank of the approximate solution
matrix. Alternatively, one can stop the method once
the residual kRkk is less than a tolerance parameter ".
The main steps of Rank-One Matrix Pursuit (R1MP)
are given in Algorithm 1.

Remark In our algorithm, we adapt orthogonal
matching pursuit on the observed part of the matrix.
This is similar to the GECO algorithm. However,
GECO constructs the estimated matrix by projecting
the observation matrix onto a much larger subspace,
which is a product of two subspaces spanned by all left
singular vectors and all right singular vectors obtained
up to the current iteration. So it has much higher
computational complexity. Lee et al. (Lee & Bresler,
2010) recently propose the ADMiRA algorithm, which
is also a greedy approach. In each step it first chooses
2r components by top-2r truncated SVD and then
uses another top-r truncated SVD to obtain a rank-
r matrix. Thus, the ADMiRA algorithm is computa-
tionally more expensive than the proposed algorithm.
The main di↵erence between the proposed algorithm
and ADMiRA is somewhat similar to the di↵erence be-
tween the OMP (Pati et al., 1993) for learning sparse
vectors and CoSaMP (Needell & Tropp, 2010). In ad-
dition, the performance guarantees (including recovery
guarantee and convergence property) of ADMiRA rely

on strong assumptions, i.e., the matrix involved in the
loss function satisfies a rank-restricted isometry prop-
erty, which is not satisfied in matrix completion (Lee
& Bresler, 2010). Lee et al. sketch a similar idea as the
standard verion of our algorithm in Remark 2.3 with-
out any further analysis, and their theoretical results
cannot be easily extended to our algorithm. Another
contribution of our work is that we further propose
an economic version of the algorithm and analyze its
convergence property.

Algorithm 1 Rank-One Matrix Pursuit (R1MP)

Input: Y
⌦

and stopping criterion.
Initialize: Set X

0

= 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular
vectors (uk,vk) of the observed residual matrix
Rk = Y

⌦

�Xk�1

and set Mk = uk(vk)T .
Step 2: Compute the weight ✓k using
the closed form least squares solution ✓k =
(M̄T

kM̄k)�1M̄T
k ẏ.

Step 3: Set Xk =
Pk

i=1

✓ki (Mi)⌦ and k  k+1.
until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

Pk
i=1

✓ki Mi.

3. Convergence Analysis

In this section, we will show that our proposed rank-
one matrix pursuit algorithm achieves a linear conver-
gence rate. This main result is given in the following
theorem.

Theorem 3.1. The rank-one matrix pursuit algorithm

satisfies

||Rk||  �k�1kYk
⌦

, 8k � 1.

� is a constant in [0, 1).

Before proving Theorem 3.1, we need to establish some
useful and preparatory properties of Algorithm 1. The
first property says that Rk+1

is perpendicular to all
previously generated Mi for i = 1, · · · , k.
Property 3.2. hRk+1

,Mii = 0 for i = 1, · · · , k.

Proof. Recall that ✓k is the optimal solution of prob-
lem (6). By the first-order optimality condition, one

has hY �
Pk

j=1

✓kjMj ,Mii⌦ = 0 for i = 1, · · · , k,
which together with Rk = Y

⌦

� Xk�1

and Xk =Pk
j=1

✓kj (Mj)⌦ implies that hRk+1

,Mii = 0 for i =
1, · · · , k.

The following property shows that as the number of
rank-one basis matrices Mi increases during our learn-
ing process, the residual kRkk does not increase.

This is significantly different from the standard MP/OMP algorithm with a finite dictionary, 
which are known to have a sub-linear convergence speed at the worst case.

At each iteration, we guarantee a significant reduction of the residual, which depends 
on the top singular vector pair pursuit step. 

¨ Linear upper bound for the algorithm to converge

Z. Wang et al. ICML’14; SIAM J. Scientific Computing 2015



Efficiency and Scalability

• An efficient and scalable algorithm for 
matrix completion: Rank-One Matrix 
Pursuit 

– Scalability: top-SVD

– Convergence: linear convergence 

Z. Wang et al. ICML’14; SIAM J. Scientific Computing 2015



Related Work

can be solved by matching pursuit type algorithms.

X = θiMi
i∈I
∑

Similarity: linear convergence
Difference: 1. top-SVD Vs. truncated SVD

2. no extra condition for linear convergence

Similarity: top-SVD 
Difference: linear convergence Vs. sub-linear convergence 

Ref: Lee, K. and Bresler, Y. Admira: atomic decomposition for minimum rank approximation. IEEE Trans. on Information Theory, 56(9):4402–4416, 2010.

Atomic decomposition

¨ Vs. Frank-Wolfe algorithm (FW)

¨ Vs. existing greedy approach (ADMiRA)



Time and Storage Complexity
• Time complexity

R1MP ADMiRA & AltMin FW Proximal SVT
Each Iter. O(|Ω|) O(r|Ω|) O(|Ω|) O(r|Ω|) O(r|Ω|)
Iterations O(log(1/ε)) O(log(1/ε)) O(1/ε) O(1/√ε) O(1/ε)
Total O(|Ω|log(1/ε)) O(r|Ω|log(1/ε)) O(|Ω|/ε) O(r|Ω|/√ε) O(r|Ω|/ε)

minimum iteration cost
+ linear convergence

Storage complexity



Economic Rank-One Matrix Pursuit

• Step 1: find the optimal rank-one matrix basis

Mk+1 = u*v*
T

θi
k−1 =θi

k−1α1 θi
k =α2

[u*,v*] = argmax
u,v

(Y−Xk )Ω,uv
T

Rank-One Matrix Pursuit for Matrix Completion

In view of this relation and the fact that kR
1

k =
kYk2⌦, we easily conclude that

||Rk||  kYk⌦
k�1Y

i=1

s

1� �2

⇤(Ri)

kRik2
.

As for each step we have 0 < 1

rank(Ri)
 �⇤(Ri)

kRik  1,

there must exist 0  � < 1 that satisfies ||Rk|| 
�k�1kY k

⌦

. This completes the proof.

Remark In practice, the value of kRik2

�2
⇤(Ri)

that controls

the convergence speed is much less than min(m,n).
We will emprically verify this in the experiments.

Remark If ⌦ is the entire set of all indices of
{(i, j), i = 1, · · · ,m, j = 1, · · · , n}, our rank-one ma-
trix pursuit algorithm equals to standard SVD using
the power method.

Remark This convergence is obtained for the opti-
mization residual in the low rank matrix completion
problem. We further extend our algorithm to solve the
more general matrix sensing problem and analyze the
corresponding statistical convergence behavior under
mild conditions, such as the rank-restricted isometry
property (Lee & Bresler, 2010; Jain et al., 2013). De-
tails are provided in the longer version of this paper
(Wang et al., 2014).

4. Economic Rank-One Matrix Pursuit

The proposed R1MP algorithm has to track all pur-
sued bases and save them in the memory. It demands
O(r|⌦|) storage complexity to obtain a rank-r esti-
mated matrix. For large-scale problems, such storage
requirement is not negligible and restricts the rank
of the matrix to be estimated. To adapt our algo-
rithm to large-scale problems with a large approxima-
tion rank, we simplify the orthogonal projection step
by only tracking the estimated matrix Xk�1

and the
rank-one update matrix Mk. In this case, we only
need to estimate the weights for these two matrices in
Step 2 of our algorithm by solving the following least
squares problem:

↵k = arg min
↵={↵1,↵2}

||↵
1

Xk�1

+ ↵
2

Mk �Y||2
⌦

. (12)

This still corrects all weights of the existed bases,
though the correction is sub-optimal. If we write
the estimated matrix as a linear combination of the
bases, we have Xk =

Pk
i=1

✓ki (Mi)⌦ with ✓kk = ↵k
2

and
✓ki = ✓k�1

i ↵k
1

, for i < k. The detailed procedure of this
simplified method is given in Algorithm 2.

Algorithm 2 Economic Rank-One Matrix Pursuit
(ER1MP)

Input: Y
⌦

and stopping criterion.
Initialize: Set X

0

= 0 and k = 1.
repeat

Step 1: Find a pair of top left and right singular
vectors (uk,vk) of the observed residual matrix
Rk = Y

⌦

�Xk�1

and set Mk = uk(vk)T .
Step 2: Compute the optimal weights ↵k for
Xk�1

and Mk by solving: argmin
↵

||↵
1

Xk�1

+

↵
2

(Mk)⌦ �Y
⌦

||2.
Step 3: Set Xk = ↵k

1

Xk�1

+ ↵k
2

(Mk)⌦; ✓kk = ↵k
2

and ✓ki = ✓k�1

i ↵k
1

for i < k; k  k + 1.
until stopping criterion is satisfied
Output: Constructed matrix Ŷ =

Pk
i=1

✓ki Mi.

The proposed economic rank-one matrix pursuit algo-
rithm (ER1MP) uses the same amount of storage as
the greedy algorithms (Jaggi & Sulovský, 2010; Tewari
et al., 2011), which is significantly smaller than that
required by R1MP algorithm. Interestingly, we can
show that the ER1MP algorithm still retains the lin-
ear convergence rate. The main result is given in the
following theorem, and the proof is provided in the
long version of this paper (Wang et al., 2014).

Theorem 4.1. The economic rank-one matrix pursuit

algorithm satisfies

||Rk||  �̃k�1kYk
⌦

, 8k � 1.

�̃ is a constant in [0, 1).

5. Experiments

In this section, we compare our rank-one matrix
pursuit algorithms R1MP and ER1MP with state-
of-the-art matrix completion algorithms. The com-
peting algorithms include: singular value projection
(SVP) (Jain et al., 2010), singular value threshold-
ing (SVT) (Candès & Recht, 2009), Jaggi’s fast al-
gorithm for trace norm constraint (JS) (Jaggi &
Sulovský, 2010), spectral regularization algorithm
(SoftImpute) (Mazumder et al., 2010), low rank ma-
trix fitting (LMaFit) (Wen et al., 2010), alternat-
ing minimization (AltMin) (Jain et al., 2013), boost-
ing type accelerated matrix-norm penalized solver
(Boost) (Zhang et al., 2012) and greedy e�cient com-
ponent optimization (GECO) (Shalev-Shwartz et al.,
2011). The general greedy method (Tewari et al.,
2011) is not included in our comparison, as it includes
JS and GECO (included in our comparison) as special
cases for matrix completion. The lifted coordinate de-
scent method (Lifted) (Dud́ık et al., 2012) is not in-

α = argmin
α∈ℜ2

α1 Xk+α2 Mk+1−Y Ω

2

• Step 2: calculate the weights for two matrices

• It retains the linear convergence



Convergence

Residual curves of the Lena image for R1MP and ER1MP in log-scale

Rank-One Matrix Pursuit for Matrix Completion

Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 4.8616 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 9.7482 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.0042 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 0.9382 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
MovieLens1M 18.90 59.56 30.55 68.77 93.91 13.10 > 104 0.87 0.54
MovieLens10M > 103 > 103 154.38 310.82 – 130.13 > 105 23.05 13.79
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Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.

rule under this framework to reduce the storage complexity
and make it independent of the approximation rank. Our al-
gorithms are computationally inexpensive for each matrix
pursuit iteration, and find satisfactory results in a few iter-
ations. Another advantage of our proposed algorithms is
they have only one tunable parameter, which is the rank. It
is easy to understand and to use by the user. This becomes
especially important in large-scale learning problems. In
addition, we rigorously show that both algorithms achieve
a linear convergence rate, which is significantly better than
the previous known results (a sub-linear convergence rate).
We also empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our re-
sults show that the proposed algorithms are more efficient
than competing algorithms while achieving similar or bet-
ter prediction performance. We plan to generalize our the-
oretical and empirical analysis to other loss functions in the
future.
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Experiments
• Experiments

– Collaborative filtering
– Image recovery
– Convergence property

• Competing algorithms
– singular value projection (SVP)
– spectral regularization algorithm (SoftImpute)
– low rank matrix fitting (LMaFit)
– alternating minimization (AltMin)
– boosting type accelerated matrix-norm penalized solver (Boost)
– Jaggi's fast algorithm for trace norm constraint (JS)
– greedy efficient component optimization (GECO)
– Rank-one matrix pursuit (R1MP)
– Economic rank-one matrix pursuit (ER1MP)

trace norm minimization

alternating optimization

atomic decomposition
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Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
Jester2 4.7608 5.1646 4.7500 4.8616 5.2319 4.5102 4.3967 4.3649 4.3546
Jester3 8.6958 5.4348 9.4275 9.7482 5.3982 4.6866 5.1790 4.9783 5.0145
MovieLens100K 0.9683 1.0354 1.2308 1.0042 1.1244 1.0146 1.0243 1.0168 1.0261
MovieLens1M 0.9085 0.8989 0.9232 0.9382 1.0850 1.0439 0.9290 0.9595 0.9462
MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
MovieLens1M 18.90 59.56 30.55 68.77 93.91 13.10 > 104 0.87 0.54
MovieLens10M > 103 > 103 154.38 310.82 – 130.13 > 105 23.05 13.79
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Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.

rule under this framework to reduce the storage complexity
and make it independent of the approximation rank. Our al-
gorithms are computationally inexpensive for each matrix
pursuit iteration, and find satisfactory results in a few iter-
ations. Another advantage of our proposed algorithms is
they have only one tunable parameter, which is the rank. It
is easy to understand and to use by the user. This becomes
especially important in large-scale learning problems. In
addition, we rigorously show that both algorithms achieve
a linear convergence rate, which is significantly better than
the previous known results (a sub-linear convergence rate).
We also empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our re-
sults show that the proposed algorithms are more efficient
than competing algorithms while achieving similar or bet-
ter prediction performance. We plan to generalize our the-
oretical and empirical analysis to other loss functions in the
future.
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Table 3. Recommendation results measured in terms of the RMSE. Boost fails on the MovieLens10M.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 4.7311 5.1113 4.7623 4.8572 5.1746 4.4713 4.3680 4.3418 4.3384
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MovieLens10M 0.8611 0.8534 0.8625 0.9007 – 0.8728 0.8668 0.8621 0.8692

Table 4. The running time (measured in seconds) of all methods on all recommendation datasets.

Dataset SVP SoftImpute LMaFit AltMin Boost JS GECO R1MP ER1MP
Jester1 18.35 161.49 3.68 11.14 93.91 29.68 > 104 1.83 0.99
Jester2 16.85 152.96 2.42 10.47 261.70 28.52 > 104 1.68 0.91
Jester3 16.58 10.55 8.45 12.23 245.79 12.94 > 103 0.93 0.34
MovieLens100K 1.32 128.07 2.76 3.23 2.87 2.86 10.83 0.04 0.04
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0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

0 50 100 150 200 250 300
10

−3

10
−2

10
−1

Lenna

rank

R
M

S
E

Figure 1. Illustration of the linear convergence of the proposed
rank-one matrix pursuit algorithms on the Lenna image: the x-
axis is the iteration, and the y-axis is the RMSE in logarithmic
scale. The curves are the results for R1MP and ER1MP respec-
tively.

rule under this framework to reduce the storage complexity
and make it independent of the approximation rank. Our al-
gorithms are computationally inexpensive for each matrix
pursuit iteration, and find satisfactory results in a few iter-
ations. Another advantage of our proposed algorithms is
they have only one tunable parameter, which is the rank. It
is easy to understand and to use by the user. This becomes
especially important in large-scale learning problems. In
addition, we rigorously show that both algorithms achieve
a linear convergence rate, which is significantly better than
the previous known results (a sub-linear convergence rate).
We also empirically compare the proposed algorithms with
state-of-the-art matrix completion algorithms, and our re-
sults show that the proposed algorithms are more efficient
than competing algorithms while achieving similar or bet-
ter prediction performance. We plan to generalize our the-
oretical and empirical analysis to other loss functions in the
future.
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Summary

• Matrix completion background
• Trace norm convex formulation
• Matrix factorization: non-convex formulation
• Orthogonal rank-one matrix pursuit

– Efficient update: top SVD
– Fact convergence rate: linear



Road Map

• Introduction to Sparsity
• Convex Approaches
• Non-Convex Approaches
• Topic: Matrix Completion 
• Topic: Multi-task Learning

120



Road Map
• Part I: Multi-Task Learning (MTL) Background and 

motivation
• Part II: Overview of MTL Models
• Part III: Application of MTL on disease progression
• Part IV: MTL Software Package (MALSAR) 



Multiple	Tasks
• Examination Scores Prediction1

School	1 - Alverno High	School	

School	138	- Jefferson	Intermediate	School	

School	139	- Rosemead	High	School	

…

1The	Inner	London	 Education	Authority	(ILEA)
student-dependent school-dependent

student-dependent school-dependent

student-dependent school-dependent

Student	
id
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year
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score

… School
ranking

…

72981 1985 95 … 83% …

Student	
id
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year
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score

… School
ranking

…

31256 1986 87 … 72% …

Student	
id
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year

Previous	
score

… School
ranking

…

12381 1986 83 … 77% …

Exam	
score

?

Exam	
score

?

Exam	
score

?
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Learning Multiple Tasks
• Learning each task independently

…

task	
1st

task	
138th

task	
139th

Student	
id
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ranking
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ranking

…
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score
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ranking

…

12381 1986 83 77% …

Exam	
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?
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?

Exam	
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?

School	1 - Alverno High	School	

School	138	- Jefferson	Intermediate	School	
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Excellent
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Learning Multiple Tasks
• Leaning multiple tasks simultaneously

…

……
Learn  tasks  simultaneously
Model the tasks relationship
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…

72981 1985 95 83% …
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…
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Student	
id

Birth	
year

Previous	
score

School
ranking

…

12381 1986 83 77% …
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School	138	- Jefferson	Intermediate	School	

School	139	- Rosemead	High	School	

Exam	
Score

?

task	
1st

task	
138th

task	
139th
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Performance of MTL
o Evaluation on the School data:

• Predict exam scores for 15362 students from 139 schools
• Describe each student by 27 attributes
• Multi-task learning performs significantly better than other single task learning 

approaches.

Performance	
measure:

1 2 3 4 5 6 7 8
0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

Index of Training Ratio

N-
M

SE

 

 
Ridge Regression
Lasso
Trace Norm
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More Applications of Multi-Task Learning

HIV Therapy 
Screening [Bickel, ICML’08]

Collaborative ordinal 
regression 

[Yu et. al. NIPS’06]

Web image and video 
search 

[Wang et. al. CVPR’09]

Disease prediction 
[Zhang et. al. NeuroImage 12]

Disease progression 
modeling 

[Zhou et. al. KDD’11, 12]

Protein classification 
[Charuvaka et. al. ICDM’12]
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Traditional Machine Learning

• Elements of machine 
learning on single task
• The problem 

(task/domain)
• Training data
• Learning algorithms
• Trained model
• Applying model on 

unseen data 
(generalization)

Training	Data

Task Domain 

Trained	Model

Machine 
Learning 

Algorithms

Task Domain

Generalization
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Transfer Learning

Training	Data

Target Domain

Knowledge

Trained	Model

Training	Data

Source Domain

Transfer 
Learning 

Algorithms

Target Domain

Generalization
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Multi-Task Learning

Training	Data

Task 1 Domain 

Trained	Model

Multi-Task Learning

Task 1 Domain

Generaliz
ation

Training	Data

Task 2 Domain 

Trained	Model

Task 2 Domain

Generaliz
ation

Training	Data

Task 3 Domain 

Trained	Model

Task 3 Domain

Generaliz
ation

…

…
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The Multi-Blah Family
• Multi-Task Learning

• A set of related machine learning tasks
• Different samples, (usually) same features for each task

• Multi-View Learning
• A learning task involving a set of different views of the same set 

of objects (e.g., text and image descriptions)
• Same samples, different features for each view

• Multi-Label Learning
• A learning task where the prediction for each sample includes 

multiple labels (e.g., news categories)
• Can be considered as multi-task with the same data matrices 

• Multi-Class Learning
• A classification task where the label can be multiple values (e.g., 

weather prediction)
• Can be considered as multi-label with mutual exclusive labels. 
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Overview	of	MTL	Models



Achieve Multi-Task Learning

• Shared Hidden Nodes in Neural Network
• Shared Parameter Gaussian Process
• Multi-Task Regularization

• Can be designed to incorporate various assumptions 
and domain knowledge

• Can be trained using large-scale optimization 
algorithms on big data

• The key is to design the regularization term that 
couples the tasks.
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Representative Regularized MTL

• Mean-Regularized MTL
• MTL with High-Dimensional Features

• Embedded Feature Selection
• Low-Rank Subspace Learning

• Clustered MTL
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Notation

• We	focus	on	linear	models:	

Learning

Task	m

Dimension	d

Sa
m
pl
e	
n t

... Sa
m
pl
e	
n 2

Sa
m
pl
e	
n 1

Feature	Matrices	Xi

Task	m

Sa
m
pl
e	
n t

... Sa
m
pl
e	
n 2

Sa
m
pl
e	
n 1

Target	Vectors	Yi

Task	m

Dim
ension	d

Model	Matrix	W
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Mean-Regularized Multi-Task Learning
Evgeniou & Pontil, 2004 KDD 

• Assumption:	task	parameter	vectors	of	all	tasks	are	
close	to	each	other.
– Advantage:	simple,	intuitive,	easy	to	implement	
– Disadvantage:	may	not	hold	in	real	applications.

mean

Task

Regularization
penalizes	the	deviation	of	each	task	
from	the	mean

min
$

1
2 𝑋𝑊 −𝑌 +

, + 𝜆/ 𝑊0 −
1
𝑚
/𝑊2

3

245

3

045 ,

,
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Multi-Task Learning with Joint Feature Learning
Obozinski et. al. 2009 Stat Comput, Liu et. al. 2010 Technical Report

• Using	group	sparsity:	ℓ5/ℓ8-norm	regularization
• When	q>1	we	have	group	sparsity.

min
$

1
2 𝑋𝑊− 𝑌 +

, + 𝜆 𝑊 5,8 𝑊 5,8 =/ 𝒘0 8

<

045

...

Y

≈ 	

n×m

... ×

WX

n×d d×m

Sample	1

...

...
Sample	2

Sample	3

Sample	n-2

Sample	n-1

Sample	n

Tas
k	1

Tas
k	2

Tas
k	3

Tas
k	m Tas

k	1
Tas

k	2
Tas

k	3
Tas

k	m

Input ModelOutput

Regularization
Encourages	group	
sparsity
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Writer-Specific Character Recognition
Obozinski, Taskar, and Jordan, 2006

• Each task is a classification between two letters 
for one writer.
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Dirty Model for Multi-Task Learning
Jalali et. al. 2010 NIPS 

• In practical applications, it is too restrictive to constrain 
all tasks to share a single shared structure.
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+=

Group	Sparse	
Component

P

Sparse	
Component

Q

Model
W

min
=,>

𝑌 − 𝑋 𝑃 + 𝑄 +
, + 𝜆5 𝑃 5,8 + 𝜆, 𝑄 5



Robust Multi-Task Learning
o Most Existing MTL 

Approaches
o Robust MTL Approaches

139

relevant	tasksall	tasks	are	relevant

All	tasks	are	related
Assumption:

There	are	outlier	tasks
Assumption:

irrelevant	task

irrelevant	task



Robust Multi-Task Feature Learning
Gong et. al. 2012 KDD

• Simultaneously	captures	a	common	set	of	features	
among	relevant	tasks	and	identifies	outlier	tasks.
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min
=,>

𝑌 − 𝑋 𝑃 + 𝑄 +
, + 𝜆5 𝑃 5,8 + 𝜆, 𝑄A 5,8
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Group	Sparse	
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Group	Sparse	
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Q
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W
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Features Outlier	Tasks



Low-Rank Structure for MTL

… 𝛼5 𝛼,+≈×

training	data weight	vector target

Task	1

… ≈×Task	2

… ≈×
Task	3

=

=

=

𝛽5 𝛽5+

𝛾5 𝛾,+

basis	vectorbasis	vector

o Capture task relatedness via a shared low-rank 
structure
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Low-Rank Structure for MTL (Cont.)

=
𝛼5 𝛼,
𝛽5 𝛽,	
𝛾5 𝛾,	

A
×

Model	Matrix Basis	vectors
Coefficients

• Rank	minimization	formulation
– min

$
Loss(𝑊)+ 𝜆×Rank(𝑊)

• Rank	minimization	is	NP-Hard for	general	loss	functions	thus	
we	use	convex	relaxation:	trace	norm	minimization
– min

$
Loss(𝑊)+ 𝜆× 𝑊 ∗ Regularization

Encourages	low-rank	
on	the	model	matrix
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Alternating Structure Optimization (ASO)
Ando and Zhang, 2005 JMRL 

143

Input X ≈ 	Task	1

Low-
Dimensional	
Feature	Map

+ Θ	 Xw1 v1

Input X ≈ 	Task	2 + Θ	 Xw2 v2

Input X ≈ 	Task	m + Θ	 Xwm vm

...

Θ	

• ASO	assumes	that	the	model	is	the	sum	of	two	components:	a	
task	specific	one	and	a	shared	low	dimensional	subspace.	



Alternating Structure Optimization (ASO)
Ando and Zhang, 2005 JMRL 
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o Learning	from	the	i-th task

ℒP XP ӨvP + wP ,yP = 	 XP ӨvP +wP − yP 	 ,

min
Ө,{XY,ZY}

	

/ ℒP XP ӨvP +wP , yP + 𝛼 wP
, 	

3

045
subject	to								Ө\Ө = I

Input X ≈ 	

Xi

Low-
Dimensional	
Feature	Map

+ Θ	 Xwi vi

yi

	uP	=ӨvP +	wP



Incoherent Low-Rank and Sparse Structures
Chen et. al. 2010 KDD 

• ASO	uses	L2-norm	on	task-specific	component,	we	can	also	
use	L1-norm	to	learn	task-specific	features.
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Element-wise	Sparse	
Component

Q
Model
W

Low-Rank	
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_,̀
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3

045
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Convex	formulation

Capture	task	relatednessTask-specific	features



Robust Low-Rank in MTL
Chen et. al. 2011 KDD
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• Simultaneously	perform	low-rank	MTL	and	identify	outlier	
tasks.

Outlier	
Tasks

basis coefficient+= = X

Model
W

Low-Rank	
Component

P

Group	Sparse	
Component

Q

mini
_,`

/ℒP XP 𝑃0 + 𝑄0 ,yP + 𝛼 P ∗ 	+	𝛽 Q\ 5,8

3

045

Capture	task	relatednessIdentify	irrelevant	tasks



Summary
• All multi-task learning formulations discussed 

above can fit into the W=P+Q schema.
– Component P: shared structure
– Component Q: information not captured by the 

shared structure
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Embedded Feature
Selection Shared Structure P Component Q
L1/Lq Feature Selection (L1/Lq Norm) 0
Dirty Feature Selection (L1/Lq Norm) L1-norm
rMTFL Feature Selection (L1/Lq Norm) Outlier (column-wise L1/Lq Norm)
Low-Rank Subspace 
Learning
Trace Norm Low-Rank (Trace Norm) 0
ISLR Low-Rank (Trace Norm) L1-norm
ASO Low-Rank (Shared Subspace) L2-norm on independent comp.
RMTL Low-Rank (Trace Norm) Outlier (column-wise L1/Lq Norm)



Multi-Task Learning with Clustered 
Structures

• Most	MTL	techniques	assume	
all	tasks	are	related

• Not	true	in	many	applications
• Clustered	multi-task	learning	
assumes	
v the	tasks	have	a	group	

structure
v the	models	of	tasks	from	the	

same	group	are	closer	to	each	
other	than	those	from	a	
different	group

Tasks	have	group	structures
Assumption:
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Clustered Multi-Task Learning
Jacob et. al. 2008 NIPS, Zhou et. al. 2011 NIPS

• Use	regularization	to	capture	clustered	structures.

Training	Data X ≈ 	

Training	Data X ≈ 	

...

Clustered	Models

...

Cluster	1 Cluster	2 Cluster	k-1 Cluster	k

Cluster	1

Cluster	2

Cluster	k-1

Cluster	k
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Clustered Multi-Task Learning
Zhou et. al. 2011 NIPS
• Capture	structures	by	minimizing	sum-

of-square	error	(SSE)	in	K-means	
clustering:

Ij index	set	of	jth cluster

min
e
// 𝑤g −𝑤hi ,

,

g∈ek

l

i45

 

min
+
tr 𝑊A𝑊 − tr(𝐹A𝑊A𝑊𝐹)

𝐹	:	m×k orthogonal	 cluster	indicator	matrix
𝐹0,i = 1/ 𝑛i if	𝑖 ∈ 𝐼i and	0	otherwise

Clustered	Models

...

Cluster	1 Cluster	2 Cluster	k-1 Cluster	k

Cluster	1

Cluster	2

Cluster	k-1

Cluster	k

m	tasks

task	number	m	>	cluster	number	k
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Clustered Multi-Task Learning
Zhou et. al. 2011 NIPS
• Directly	minimizing	SSE	is	hard	

because	of	the	non-linear	constraint	
on	F:

min
+
tr 𝑊A𝑊 − tr(𝐹A𝑊A𝑊𝐹)

𝐹	:	m×k orthogonal	cluster	indicator	matrix
𝐹0,i = 1/ 𝑛i if	𝑖 ∈ 𝐼i and	0	otherwise

min
+:+t+4eu

tr 𝑊A𝑊 − tr(𝐹A𝑊A𝑊𝐹)

Zha et. al. 2001 NIPS

Clustered	Models

...

Cluster	1 Cluster	2 Cluster	k-1 Cluster	k

Cluster	1

Cluster	2

Cluster	k-1

Cluster	k

m	tasks

task	number	m	>	cluster	number	k
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Improves
generalization
performance

capture cluster structures

Cluster	1

Cluster	2

Cluster	k-1

Cluster	k

Clustered Multi-Task Learning
Zhou et. al. 2011 NIPS

• Clustered	multi-task	learning	(CMTL)	formulation

• CMTL	has	been	shown	to	be	equivalent	to	another	class	of	
MTL	called	ASO	
– Given	the	dimension	of	the	shared	low-rank	subspace	in	ASO	and	the	

cluster	number	in	clustered	multi-task	learning	(CMTL)	are	the	same.	

min
$,+:+t+4eu

Loss W + 𝛼 tr 𝑊A𝑊 − tr 𝐹A𝑊A𝑊𝐹 + 𝛽 tr 𝑊A𝑊
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Convex Clustered Multi-Task Learning
Zhou et. al. 2011 NIPS

Ground	Truth Mean	Regularized	MTL

Trace	Norm	Regularized
MTL

Convex	Relaxed	CMTL

noise	introduced
by	relaxations

Low	rank	can	also
well	capture	

cluster	structure
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Multi-Task	Learning	Application
Modeling	Disease	Progression	via	Multi-Task	Learning
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Background (cont.)
• NIH in 2003 funded the Alzheimer’s Disease 

Neuroimaging Initiative (ADNI), facilitating a public 
available database for using neuroimaging data in 
predicting the progression of AD.
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Disease Progression
• Clinical scores are 

used to evaluate the 
cognitive status
– MMSE, ADAS-Cog 

and etc. 
• Disease progression

– Prediction of clinical 
scores from 
neuroimaging 
features

– Build one regression 
model at each time 
point.
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Disease Progression (cont.)
• Disease	progression	as	machine	learning	tasks

– Build	one	regression	model	at	each	time	point.
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Model I: Temporal Group Lasso (TGL)
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Model II: Fused Sparse Group Lasso (FSGL)

Group	Sparse
Models	at	different	
time	points	share	
the	same	set	of	
features

Sparse	Temporal	
Smoothness	 via	
Fused	Lasso
For	each	feature	
parameter,	 the	
change	of	values	and	
sparse	pattern	of	
parameters	is	smooth	
over	time

Element-wise	Sparse
Improves	generalization	
performance

Loss	Function
Performs	
regression
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Optimization Algorithm
• Objective	is	convex	but	non-smooth	

– Objective	is	smooth	+	non-smooth	composite
– Projected	gradient/accelerated	projected	gradient
– Key:	proximal	operator	(Euclidean	projection)

Can be decomposed into 
two simpler problems 
and solved efficiently
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Performance
• Use	baseline MRI	feature	to	predict	future	MMSE	score
• Average	performance	over	10	iterations

1.5

2

2.5

3

3.5

4

4.5

M06 M12 M24 M36 M48

MMSE

Ridge Lasso TGL FSGL
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Performance (cont.)
• Use baseline MRI feature to predict ADAS-Cog score
• Average performance over 10 iterations

4

4.5

5

5.5

6

6.5

7

7.5

8

M06 M12 M24 M36 M48

ADAS-Cog

Ridge Lasso TGL FSGL
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Multi-Task Learning Software
MALSAR: Multi-Task Learning via Structural Regularization
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• Firstly introduced my MTL tutorial at SDM in 2012
• Over 40 research works using MALSAR are published in KDD, NIPS, TPAMI, 

ICCV, ICDM, ICIP, COLING, MICCAI, ACM-MM, etc.
• Used as course material to analyze compound profiling in the Strasbourg 

Summer School in France
• A core component in the $11mi NIH-BD2K grant
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Some MTL Algorithms in MALSAR
• Mean-Regularized Multi-Task Learning
• MTL with Embedded Feature Selection

– Joint Feature Learning
– Dirty Multi-Task Learning
– Robust Multi-Task Feature Learning

• MTL with Low-Rank Subspace Learning
– Trace Norm Regularized Learning
– Alternating Structure Optimization
– Incoherent Sparse and Low Rank Learning 
– Robust Low-Rank Multi-Task Learning

• Clustered Multi-Task Learning
• Graph Regularized 
• Many more…
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An Example

Create a random MTL 
dataset

Invoke an MTL algorithm



Thanks!


