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Abstract

Parkinson’s disease (PD) is a chronic disease that de-
velops over years and varies dramatically in its clini-
cal manifestations. A preferred strategy to resolve this
heterogeneity and thus enable better prognosis and tar-
geted therapies is to segment out more homogeneous
patient sub-populations. However, it is challenging to
evaluate the clinical similarities among patients because
of the longitudinality and temporality of their records.
To address this issue, we propose a deep model that
directly learns patient similarity from longitudinal and
multi-modal patient records with an Recurrent Neural
Network (RNN) architecture, which learns the similar-
ity between two longitudinal patient record sequences
through dynamically matching temporal patterns in
patient sequences. Evaluations on real world patient
records demonstrate the promising utility and efficacy
of the proposed architecture in personalized predictions.

1 Introduction

Parkinson’s disease (PD) is a neurodegenerative dis-
order encompassing both motor and non-motor symp-
toms. It progresses over years and varies dramatically
in its clinical manifestations and overall prognosis. The
PD individuals may have different ages of onset (AO),
and may be affected with motor impairment, motor
severity, cognitive status, sleep disorders, and cardiac
autonomic dysfunction - to varying extents and at vary-
ing speed [10, 26, 20]. For any single domain, e.g. mo-
tor severity, some patients may have late AO and show
rapid progression throughout the course of PD, while
some others may have early AO but a slow and stabi-
lized progression [26]. The heterogeneity reveals differ-
ent underlying disease mechanism such as the biological
mechanism (e.g. different dopamingeric dysfunction lev-
els might trigger distinct PD pathology and thus lead to

∗equal contributions
†Key Lab of ADIC, Dalian University
‡Univ. of Washington and IBM T.J. Watson Research Center
§Dept. of Automation, Tsinghua University
¶Computer Science, Dalian University of Technology
‖Computer Science and Eng., Michigan State University
∗∗Weill Cornell Medical School, Cornell University

various PD trajectories), however, it may contribute to
inaccurate assessment of PD status and, thereby, affects
treatment decisions, including the selection of patients
for targeted therapies.

A preferred strategy to resolve this heterogeneity
and thus enable better prognosis and targeted thera-
pies is to segment out more homogeneous patient sub-
populations with similar clinical characteristics. With
those similar patient cohorts we can perform targeted
prognosis and design customized therapies. Previous
comparative studies also provide evidence that person-
alized models could provide improved predictive perfor-
mance over global and local models across a range of
different healthcare informatics tasks [17, 22, 28].

To identify similar patient cohort, there is no uni-
versally accepted consensus on the grouping criteria,
also a “top-down” polling based on prior assumptions
would be difficult since the approach relies on accurate
clinical observations to recognize patterns from all avail-
able wide breath of clinical features [19]. Therefore,
there is an urgent need for a data-driven approach, in
which similarity of the underlying disease mechanism
arise from complex patient data. Among existing meth-
ods, traditional vector based approaches aggregate pa-
tient record sequences to obtain vector based patient
representation, and calculate similarity on top of those
patient vectors. For example, [28] proposes to use a
local spline regression (LSR) based method to embed
patient events into an intrinsic space, and then mea-
sure the patient similarity by the Euclidean distance in
the embedded space. However, this vector based rep-
resentation neglects all temporal information in patient
records.

More recently, deep learning techniques have been
adopted in patient representation learning. In [21], the
authors develop a deep neural network composed of a
stack of denoising autoencoders to process electronic
health records (EHR) in an unsupervised manner that
captured stable structures and regular patterns in the
data and generate a patient representation. Patient
similarity is then calculated based on such representa-
tion. In [6], the authors adopt “Word2Vec” technique
to train a two-layer neural network from a record cor-



pus to map each event into a vector space encoding the
event contextual correlations. The similarities (e.g. co-
sine distance) evaluated in such embedded vector space
reflect the contextual associations (e.g., event A and B
with high similarity suggests they tend to appear in the
same context). However, these techniques do not ex-
plicitly model dynamic temporal information or tackle
the challenges from heterogeneous data sources.

To summarize, despite of their initial successes, the
existing methods still have the following limitations:

• They often learn patient similarity via some inter-
mediate representations, rather than directly from
sequences. The complexity of relationship between
different events could be over-simplified and some
critical information could be overlooked in the in-
dependently learned representations.

• Temporal dynamics are either not accounted in the
learned representation or not accounted in comput-
ing patient similarities. The temporal mismatch
between patient event sequences (e.g. due to wide
range of event lengths and interval lengths) may
impact the similarity measure depending on the na-
ture of events, disease mechanism and other factors.

• The experiments in previous works often only in-
volve one type of patient data, e.g. diagnosis in
patient Electronic Health Records (EHR). There is
a lack of work that learns patient similarity based
on the data obtained from multiple modalities.

The proposed work in this paper, which is inspired
by the ideas in [27] and [12], aims at addressing those
challenges. In [12], the authors use multi-directional
RNN to access contextual information and successfully
apply the model on the digit recognition task with
warped test set. We propose a method to directly learn
patient similarity from longitudinal and multi-modal
patient data with an RNN architecture that can encode
the similarity of two sequences and dynamically match
temporal pattern in data. In particular, we treat the
inter-relations between events from two sequences as
a two-dimensional domain, with prefixes as contextual
information. Gated Recurrent Unit (GRU) [5] is used
to overcome the vanishing gradient problem and control
the information flow to adapt to different time scales.
The learned pair-wise similarity representation is robust
to event warping and fed into a linear function to learn
the final similarity score in a similar fashion as the
learning-to-rank approach. Our main contributions are:

• We design a deep learning model to directly com-
pute pairwise patient similarities which capture po-
tentially complex relationships between heteroge-
neous and longitudinal patient records.

• We borrow the idea of Dynamic Time Warping
(DTW) combining with a 2D-RNN architecture us-
ing a ranking loss function to learn the similarity
between two temporal sequences varying in speed
of evolving records. An optimal similarity repre-
sentation that is robust to warping will be learned.

• We perform extensive experiments on a large scale
real world patient dataset obtained from a longitu-
dinal cohort study. Results show that performance
of the proposed method significantly outperforms
baselines in both similarity learning and personal-
ized predictions tasks.

The rest of the paper is organized as follows. In
section 2, we introduce the building blocks of our models
and discuss related work in Section 3. Next we introduce
the proposed architecture in Section 4, and evaluate it
with real world data in Section 6. We also discuss results
in Section 7. Last, we conclude our work and highlight
future directions in Section 8.

2 Background

2.1 Recurrent Neural Networks (RNN) The re-
current neural network (RNN) is a feed-forward neu-
ral net that computes a fixed sequence of learned non-
linear transformations to convert an input pattern into
an output pattern. The structure of RNN enables the
networks to capture the temporal dynamics and/or per-
form sequential prediction. The hidden states works as
the memory of network such that the current state of the
hidden layer depends on previous time. This enables the
RNNs to handle variable-length sequence input. Two
prominent variants with sophisticated gating mecha-
nisms are widely used: the long short-term memory
(LSTM) unit [14], and the gated recurrent unit (GRU)
[5]. They are designed to overcome the vanishing gra-
dient problem as well as capture the effect of long-term
dependencies. Empirical studies show that GRU and
LSTM have comparable prediction performance[7, 16].
However, GRU with a simpler architecture have fewer
parameters, which could reduce calculating time, espe-
cially in a complex architecture. Thus in this work,
we choose to use GRU to overcome vanishing gradient
problem and control the information flow to adapt to
different time scales.

2.2 Dynamic Time Warping (DTW) The dy-
namic time warping (DTW) is an approximate pattern
detection algorithm that measures similarity between
two temporal sequences which may vary in speed. It
uses a dynamic programming approach to minimize a
predefined distance measure (e.g. Euclidean distance)
so that two time series are optimally aligned through a



warping path. DTW has been successfully applied in
the speech recognition field to tolerate nonlinear rate
variations [25], and also shows great performance in on-
line streaming monitoring [23], DNA sequence mining
[1] and entertainment [31]. It is considered the best
measure for time series pattern matching across a wide
range of application domains[24].

In this work, to handle the temporal dynamics in
patient data, we use 2D-RNN to mimic the dynamic
programming formula in DTW with the learned gate
parameters. By such design, our model would adopt the
benefit of DTW and have better alignment for pairs of
sequences of events with significant temporal dynamics
(e.g. varying inter-event interval lengths and event
duration).

3 Related Work

3.1 Patient Similarity Patient similarity is one ma-
jor research topic in the healthcare informatics domain.
Much effort has been done in this area in the past years.
For example, [3] proposed a patient similarity algorithm
that weights similarity measures using Support Vector
Machine. [28] proposed to use a Local Spline Regression
based method to embed patient events into an intrinsic
space, then measure the patient similarity by the Eu-
clidean distance in the embedded space. These meth-
ods do not take the temporal information into consid-
eration when evaluating patient similarities. [29] pre-
sented an One-Sided Convolutional Matrix Factoriza-
tion for detection of temporal patterns. However, none
of these methods directly learns patient similarity from
heterogeneous multi-modal data with considering tem-
poral timestamp information.

Deep learning models become a recent trend of
patient similarity learning. In [4], the authors pro-
posed an adjustable temporal fusion scheme using CNN-
extracted features. In [21], the authors develop a deep
neural network composed of a stack of denoising autoen-
coders to process electronic health records (EHR) in an
unsupervised manner and then compute patient simi-
larity based on such representation. While in [6], the
authors adopt “Word2Vec” technique to train a two-
layer neural network from a record corpus to map each
event into a vector space encoding the event contextual
correlations. The similarities (e.g. cosine distance) eval-
uated in such embedded vector space reflect the contex-
tual associations (e.g., event A and B with high similar-
ity suggests they tend to appear in the same context).
However, these techniques do not explicitly model dy-
namic temporal information or tackle the challenges of
learning from heterogeneous data sources.

3.2 Personalized Prediction in Healthcare Per-
sonalized models in the context of healthcare applica-
tions have recently been investigated. In [17], the au-
thors performed a series of comparative studies and
found that across a range of different bioinformatics
classification tasks, personalized models can provide
improved accuracy over global and local models. In
[22], the authors performed personalized prediction by
matching clinical similar patients with a locally super-
vised metric learning measure. [18] proposed an inte-
grated method to provide personalized treatment and
drug design. In [30], the authors proposed a multi-
task learning approach to provide personalized predic-
tion model, by building one different predictive model
for each patient.

This work extends the patient similarity learning
and personalized prediction along a number of impor-
tant dimensions, including: 1) a deep architecture to di-
rectly compute similarity with considering of the tempo-
ral dynamics across data obtained from multiple modal-
ities, and 2) personalized prediction of target measures
over a few time stamps based on clusters of similar pa-
tients.

4 The RNN Architecture with Dynamic
Temporal Matching

To enable the challenging personalized prediction task,
we introduce an RNN architecture to compute the
similarity between sequences of patient data with a
DTW-like structure that brings better alignment for
sequences with significant temporal dynamics. As
shown in Figure 1, the matching structure comprises of
three steps: 1) obtain the distance between two patient
data sequences, 2) apply 2D-RNN to compute the global
distance between two patient data tensors, and 3) apply
a linear scoring function to obtain the final distance.

4.1 Similarity between Patient Data Sequence
For each patient, we normalize the data from multiple
modalities into a unified vector as follows. Given
two patient vectors u(wi) and u(vj) where u(wi) =
(wi1, wi2, . . . , win) and u(vj) = (vj1, vj2, . . . , vjn), a
typical way to compute their similarity is to calculate
their distance with Euclidean distance measure:

dij =

√√√√ n∑
k=1

(wik − vjk)2.

However, such direct computation is not enough due to
its limitation in modeling temporal dynamics. Particu-
larly, although similar patients are more likely to show
similarity in overall trends of illness, the temporal events
in their data may vary in speed and local arrangement.



P1

P2

w1

  

wi

  

wm

v1

  

vj

  

vm

Sij

hmn

hij

Calculating distance 

of two records.

Calculating distance 

of two patients.

Obtaining overall 

matching score.

Figure 1: The proposed RNN architecture with dynamic
temporal matching

For example, two similar patients go to clinics and get
the same diagnosis, but the time stamps of diagnosis
can be different, which could introduce noise in learn-
ing patient similarity.

4.2 Dynamic Temporal Matching To lift the
aforementioned limitations, we get inspired by DTW
and design a deep matching structure that warps se-
quences non-linearly in the time dimension to reduce
noise. The DTW distance dtw(i, j) is computed using
Eq. 4.1 in a recursive way:

dtw(i, j) =d(wi, vj) + min{dtw(i− 1, j),

dtw(i, j − 1), dtw(i− 1, j − 1)},
(4.1)

where d(wi, vj) refers to the distance of two observations
wi and vj .

Figure 2 provides a simplified illustration of match-
ing process between patients P1 and P2 using the DTW-
inspired design. In the illustration, we only consider
binary features for simplicity. Given patients P1 =
(0, 0, 1, 1, 1, 0, 0, 0, 1, 1) and P2 = (0, 0, 1, 1, 0, 0, 0, 1), we
denote the i-th feature value of P1 as wi and the j-th
feature value of P2 as vj . P1 and P2 are represented
using waveform in Figure 2. The waveform of P1 and
P2 look similar overall, however, their similarity cannot
be measured using Euclidean distance due to different
dimensions. Using DTW, we measure their similarity
by aligning P1 and P2 in time dimension. For example,
when comparing at time stamp 5, we “warp” the time
axis by computing the distance of (w5, v4) instead of
(w5, v5) since the distance of (w5, v4) is shorter. Similar
warping is also needed at (w8, v7) and (w10, v8).

4.3 2D-GRU for Dynamic Temporal Matching
In this work, we borrow the idea of DTW and combine
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Figure 2: The matching process of DTW

a 2D-RNN architecture with a ranking loss function to
learn the similarity between two temporal sequences.
The design is described as follows. Denote the records
for a patient as P1 = {w1, ..., wi, ..., wm}, where wi is
the i-th event. Also denote the prefixes P [1 : i] =
{w1, ..., wi} as the sequence of events from the first event
to i-th event. Given two patients’ sequences of events
P1 = {w1, ..., wm} and P2 = {v1, ..., vn}, the distance
between prefixes P [1 : i] and P [1 : j] is determined by

distance of sub-prefixes ~hi−1,j , ~hi,j−1,~hi−1,j−1 and the
distance of the current record as shown in Formula 4.2.

(4.2) ~hi,j = f(~hi−1,j ,~hi,j−1,~hi−1,j−1, ~d(wi, vj)),

where ~hi−1,j is the distance between prefixes P1[1 : i−1]

and P2[1 : j], ~d(wi, vj) indicates the distance between
the i-th record of P1 and the j-th record of P2. Here
the f function we choose is a 2D-GRU(gated recurrent
unit) as illustrated in Figure 3.
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Figure 3: Illustration of 2-D Gated Recurrent Units.
The update gate ~z and reset gate ~r control previous
unit input of three directions. x directly input its value
to output hij

GRU utilizes two gates to tackle the gradient van-
ishing and exploding problems of RNN. In this paper,
we extend the traditional GRU to 2D-GRU. In 2D-
GRU, we use a reset gate ~r to decide how much infor-
mation of the previous hidden state is discarded and an
update gate ~z to decide how much information stored in
the hidden state is updated. For a given position (i, j),
the input of previous units comes from three directions
(i− 1, j), (i, j − 1) and (i− 1, j − 1), denoted as l, t, d



respectively. Therefore, the update gate ~z and the reset
gate ~r actually control the input information of three
directions. Besides the input of previous units, the unit
also needs the distance dij as the input. Thus, input
vector ~q is constructed by concatenating four vectors
~hTi−1,j ,

~hTi,j−1, ~hTi−1,j−1, and dij :

~qT = [~hTi−1,j ,
~hTi,j−1,

~hTi−1,j−1, dij ].

Given a input vector ~q, ~r and ~z are computed by :

~r = σ(W (r)~q +~b(r))

~z = σ(W (z)~q +~b(z)),

where W (r) and W (z) indicate weight coefficient of reset
gate and update gate, respectively, and ~b(r) and ~b(z) are
thresholds of reset gate and update gate, respectively.
The global matching score ~hi,j is then computed as
following:

~h′ij = φ(~wdij + U(~r � [~hTi−1,j ,
~hTi,j−1,

~hTi−1,j−1]T ) +~b))

~hij =W (m)(~z � [~hTi−1,j ,
~hTi,j−1,

~hTi−1,j−1]T )

+ U (m)(1− ~z)� ~h′ij + ~wdij ,
(4.3)

where ~h′ij denotes the hidden state, W (m) and U (m) are
the parameters of the reset gate, ~w is weight coefficient
of distance between two patients. In addition, we use
tanh for φ, and � for Hadamard product, of which each
element multiply the element in the same position.

4.4 Linear Scoring Function The 2D-GRU scans
the input recursively from position (0, 0) to position

(m,n), therefore the last output of the model is ~hmn,
which reflects the global distance between two patients.
The overall matching score can be obtained using For-
mula 4.4:

(4.4) M(P1, P2) = W (s)~hmn +~b(s),

where W (s) and ~b(s) are the parameters of the linear
function.

4.5 Optimization We choose pairwise ranking loss
as the loss function. Given a triplet (P1, P

+
2 , P

−
2 ) where

the matching distance of (P1, P
+
2 ) is shorter than that

of (P1, P
−
2 ), the loss function is defined as the one in

Formula 4.5:

L(P1, P
+
2 , P

−
2 ) =

max(0, 1 +M(P1, P
+
2 )−M(P1, P

−
2 )) + λ‖Θ‖22

(4.5)

where M(P1, P
+
2 ) and M(P1, P

−
2 ) are the match-

ing scores of two patients. And the parame-
ters of RNN based matching structure are Θ =

{W (r),~b(r),W (z),~b(z), ~w, U,~b,W (m), U (m),W (s),~b(s)}.
Among them, W (r) and ~b(r) are parameters of the reset
gate, W (z) and ~b(z) are parameters of the update gate,
~w, U and ~b are the parameters of the memory cell,
W (m) and U (m) are parameters of dimension transfor-
mation, W (s) and ~b(s) are the parameters of the linear
function. To minimize the loss, all these parameters
are trained using back-propagation and mini-batch
Stochastic Gradient Descent with AdaGrad [9].

5 Personalized Prediction

The learned patient similarity could be used in personal-
ized prediction. For a queried patient we firstly retrieve
the top N similar patients to form a sub-population.
Then we train predictive models based on these similar
patients to make personalized prediction for the queried
patient. In this paper, we use such approach to predict
a set of ordered scores that would reflect the cognitive
stages of patients with Parkinson’s disease. Note that
since we will predict ordered scores for the next several
time periods, the prediction task could be considered as
an ordinal classification problem. As for the classifiers,
the proposed personalized prediction step is flexible to
admit any classifier for multi-class classification. Here
in this work we employ two classifiers: multiclass lo-
gistic regression and multiclass support vector machine
(SVM) [8]. For multiclass SVM, we take the one-versus-
rest strategy. In addition, since logistic regression takes
vector sequences as inputs while a patient often has sev-
eral records at different time stamps in our data, we con-
sider the latest record next to the prediction window as
the input for logistic regression.

6 Experiments

6.1 Datasets To evaluate the performance of the
proposed architecture in the task of personalized pre-
diction, we use the data from the Parkinson’s Progres-
sion Markers Initiative (PPMI) challenge dataset1. The
PPMI is a landmark observational clinical study that
comprehensively evaluates PD cohorts using heteroge-
neous sources of data including advanced imaging, bio-
logic sampling and clinical and behavioral assessments
to identify the conditions of PD progression for patients.
The data is sparse, irregular, and longitudinal with a
great deal of temporal information embedded in the
medical events underpinning the long period progres-
sion path of PD, adding more difficulty in learning.

To preprocess the data, we extract all features and
select the features that are observed in at least 400
patients’ records. Then we leave out the prodromal
cohorts and only keep 683 patients whose primary

1http://www.ppmi-info.org/



diagnosis are either Idiopathic PD (case) or “No PD
nor other neurological disorder” (control). As a result,
we have 466 cases and 217 controls.

Then we impute most missing values as well as
handle data anomaly. For most of the missing values
we use the last occurrence carry forward strategy [11].
If the first record of a patient is missing, we impute it
with the first ever observed record of the patient. If all
entries of one feature of a patient are missing, we used
the mean value of all observed values of this feature
across the entire population to impute. For features
with integer values, we round up such mean values.
For categorical features, we transform and normalize
them into one-hot form [13]. In addition, we also
handle data anomalies by encoding abnormal entries
as 1 and 0 otherwise. Furthermore, we remove those
patients with less than 3 sequences. After the above
processing, we have data records of 617 patients with
15636 record sequences in all, i.e., each patient has 25
data sequences on average. Table 1 summarizes the data
used in evaluation. As the loss function of our model
is pairwise, we need to construct a triplet (P1, P

+
2 , P

−
2 )

by finding a positive patient P+
2 and a negative patient

P−2 for each patient P1 . After ranking all the patients
according to their similarities with P1, we select four
most similar patients as positive patients and randomly
select four patients from those ranking after 200 as
negative patients. Consequently, sixteen triplets are
built for each patient and the size of the training set
increases to 16 times of the number of patients, which
helps tackle the over-fitting issue to some extent.

Table 1: Summary of PPMI dataset

Item Count
patient number 617
record number 15636
feature dimension 319

6.2 Features and Targets For features, we followed
[26] and chose 319 raw features in the following 7
categories: 1) motor symptoms/complications (MCs)
(SPES/SCOPA sections Motor/Complications), 2) cog-
nitive functioning (SCOPACOG), 3) autonomic symp-
toms (SCOPA-AUT), 4) psychotic symptoms (SCOPA-
PC, items 1–5), 5) nighttime sleep problems and ex-
cessive daytime sleepiness (SCOPASLEEP), 6) depres-
sive symptoms [PROPARK: Beck Depression Inventory
(BDI); 7) ELEP: Hospital Anxiety and Depression Scale
(HADS)8.

In addition, we used Hoehn and Yahr (NHY) scale
scores [15] from the last 3 months as the prediction tar-

gets. NHY scale is a commonly used system describ-
ing how the motor functions of PD patients deteriorate.
The scores are ordered and discrete, ranging from 0 to
5. Score 1.0 means that the PD is limited to one side
of the body. Other motor conditions such as tremor,
rigidity, reduced arm swing, and slowness are present
only on one side. Score 2.0 refers to problems affecting
both sides. The higher the score, the more severe the
condition is.

6.3 Evaluation Method In this section we discuss
the evaluation methods for 1) patient similarity learn-
ing, and 2) personalized prediction. To evaluate patient
similarity learning, we use the Precision@K patients re-
trieved as the performance measure [2]. Precision@K

is calculated as
∑N

n=1 P@Kn

N , where N is the number of
patients in the test data set and P@Kn indicates the
precision for the n-th test data with a set of top K sim-
ilar patients by the RNN based matching structure. As
there is no ground truth for patients similarity learning,
we employed the Euclidean distances of patients as the
ground truth for similarity learning. The Euclidean dis-
tances are measured by the average values of all the 82
targets from the last 3 month period.

To evaluate the performance of personalized predic-
tion in terms of an ordinal classification task, we choose
Root-Mean-Square Error (RMSE) as the measure,

which is calculated as RMSE =
√

1
n

∑n
t=1(ŷt − yt)2,

where ŷt indicates the predicted NHY score for patient
t and yt is actual NHY score for patient t. RMSE is a
performance measure for ordinal classification. It could
measure how close a wrong prediction is to the true
value. In addition to RMSE, we also use confusion
matrix and micro-average precision, recall, F1 score to
demonstrate the experiment results of personalized pre-
diction.

For both tasks, we divide the data of 617 patients
into training, validation, and testing sets with a ratio of
8:1:1 and report the performance on test set.

6.4 Experiment Results In the experiments, we set
the batch size of Stochastic Gradient Descent (SGD)
to be 10. It’s a small value since there are only
617 patients in our dataset. All the parameters are
initialized randomly following a Uniform distribution.
The dimension of the RNN based matching structure is
set as 5 after validating values of d = 2, 5, 10.

In this paper, we compare with several state-of-the-
art baselines to evaluate the performance of our simi-
larity learning and personalized prediction approaches.
For similarity learning, we consider Euclidean distance
measure as the baselines, which measures the distance
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by calculating Euclidean distance of the average feature
vectors of two patients. For personalized prediction,
we employ Multiclass LR, K-Nearest Neighbors(KNN),
multiclass SVM and Long Short-Term Memory (LSTM)
as the baselines. To distinguish the traditional methods,
the LR and SVM trained on similar patients are called
personalized LR and personalized SVM, respectively.

Figure 4 shows the similarity learning results of
our method. The evaluation terms (precision @K
patients retrieved) of different patients were averaged to
obtain the experimental results. The proposed method
performed better than the baseline.

To optimize the values of the parameter K on
the validation data, we compare the results for K
varying from 5 to 250 (Figure 5) and observe that
both personalized LR and personalized SVM could
achieve the best RMSE at more than one values of K.
Since a smaller value of K can increase computational
efficiency, we choose the smallest K that generates the
best performance. For personalized LR, we setK = 145,
while for personalized SVM, K = 120.

Table 2: Performance of different prediction models,
where Pers. is the abbreviation for Personalized, and
Mult. stands for Multiclass

Model RMSE micro-P micro-R micro-F1
Pers. LR 0.6583 0.7167 0.7167 0.7167
Pers. SVM 0.6952 0.7667 0.7667 0.7667
Mult. LR 0.7188 0.6833 0.6833 0.6833
Mult. SVM 0.7416 0.7500 0.7500 0.7500
KNN 0.9574 0.5667 0.5667 0.5667
LSTM 0.7853 0.3833 0.3833 0.3833
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Figure 5: RMSE of personalized LR and personalized
SVM varying with K similar patients.

Table 2 compares the performance of our meth-
ods against four baselines including Multiclass LR,
Multiclass SVM, KNN, and Long Short-Term Mem-
ory (LSTM) [14] in the term RSME, micro-average
precision(micro-P), micro-average recall(micro-P) and
micro-average F1 score(micro-F1). In addition, we also
make performance comparison using the confusion ma-
trix in Figure 6, where columns represent the predicted
patient classes and rows represent their true classes.
From the results we can observe that the proposed mod-
els can gain the largest numbers in cell diagonals of
the matrix, i.e. the most correct predicting results.
Moreover, compared with Multiclass LR and Multiclass
SVM, the proposed Personalized LR and Personalized
SVM can gain less wrong predicting results, for exam-
ple at the cell of line 1 and column 3 in the matrix in
Figure 5(a) to 5(d).

7 Discussion

From the experiment, we have the following findings.

• Performance of personalized prediction models is
closely related to the size of similar patient sub-
group K. From Figure 5, the RSME initially de-
clines as K increases and then becomes stable or
increases after K reaches 220.

• The personalized prediction model outperforms
baselines including LSTM, one most popular RNN
architecture, with a large performance gain due to
the personalized prediction setting, as well as the
effectiveness of the learned cohorts with similar pa-
tients.

• The personalized prediction adopts similar concept
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(d): Multiclass SVM

  9   5   3   0   0   0

  2   1   4   1   0   0

  3   7   24   0   0   0

  1   0   0   0   0   0

  0   0   0   0   0   0

  0   0   0   0   0   0

0 1 2 3 4 5

0

1

2

3

4

5

(e): KNN

  1   16   0   0   0   0

  0   5   3   0   0   0

  0   17   17   0   0   0

  0   0   1   0   0   0

  0   0   0   0   0   0

  0   0   0   0   0   0

0 1 2 3 4 5

0

1

2

3

4

5

(f): LSTM

Figure 6: Confusion Matrix of six prediction models

as KNN in terms of prediction based on K most
similar patients, however, significantly outperforms
KNN. The results indicate that the similar patients
obtained by our model can enhance the perfor-
mance of prediction model more effectively than
those acquired by Euclidean distance of mean fea-
ture vectors since the matching structure might
catch the underlying interaction between different
patients from the point view of prediction targets.

• In the experiment, the HNY scores are extremely
unbalanced. Figure 6 shows that most patients
are in stage 0 and 2, while there are few or even
none patients in stage 3, 4 and 5. Thus, the stages
1 and 3 next to stage 0 and 2 are prone to mis-
classification.

8 Conclusion and Future Work

In this work, we have developed a novel deep model for
patient similarity learning. The proposed approach di-
rectly learns patient similarity from longitudinal and
multi-modal patient data with an RNN architecture
that can encode the similarity of two sequences and
dynamically match temporal patterns in patient data.
Based on the learned similarity, we further develop a
personalized prediction framework that is flexible to ad-
mit various classifiers in the prediction step. We further
apply our proposed model on real-world patient data ob-
tained from a longitudinal study of Parkinson’s disease,
which demonstrates promising utility and efficacy of our
method. Potentially, this study could be extended along
both the directions of similarity learning and personal-
ized prediction. For example, we could explore better
loss functions for more accurate similarity learning. It
is worth designing a more effective framework for multi-
target predicting.

Acknowledgement

Data used in the preparation of this article were ob-
tained from the Parkinson’s Progression Markers Initia-
tive (PPMI) database (http://www.ppmi-info.org/
data). For up-to-date information on the study, visit
http://www.ppmi-info.org. PPMI – a public-private
partnership – is funded by the Michael J. Fox Foun-
dation for Parkinson’s Research and funding part-
ners, including abbvie, Avid, Biogen, Bristol-Mayers
Squibb, Covance, GE, Genentech, GlaxoSmithKline,
Lilly, Lundbeck, Merk, Meso Scale Discovery, Pfizer, Pi-
ramal, Roche, Sanofi, Servier, TEVA, UCB and Golub
Capital. The work of Chao Che is supported by NSFC
No. 91546123. The work of Fei Wang is partially sup-
ported by NSF IIS-1650723. The work of Jiayu Zhou
is supported in part by ONR N00014-14-1-0631, NSF
IIS-1565596 and IIS-1615597.

References

[1] J. Aach and GM. Church. Aligning gene expression
time series with time warping algorithms. Bioinfor-
matics, 17:495–508, 2001.

[2] Chris Buckley and Ellen M. Voorhees. Retrieval
evaluation with incomplete information. SIGIR ’04,
2004.

[3] L. Chan, T. Chan, L. Cheng, and W. Mak. Ma-
chine learning of patient similarity: A case study on
predicting survival in cancer patient after locoregional
chemotherapy. In 2010 IEEE International Confer-
ence on Bioinformatics and Biomedicine Workshops
(BIBMW), 2010.

[4] Y. Cheng, F. Wang, P. Zhang, and J. Hu. Risk

http://www.ppmi-info.org/data
http://www.ppmi-info.org/data
http://www.ppmi-info.org


prediction with electronic health records: A deep
learning approach. 2016.

[5] K. Cho, B. Merrienboer, C. Gulcehre, F. Bougares,
H. Schwenk, and Y. Bengio. Learning phrase repre-
sentations using RNN encoder-decoder for statistical
machine translation. 2014.

[6] Edward Choi, Mohammad Taha Bahadori, Elizabeth
Searles, Catherine Coffey, Michael Thompson, James
Bost, Javier Tejedor-Sojo, and Jimeng Sun. Multi-
layer representation learning for medical concepts.
KDD ’16, 2016.

[7] Junyoung Chung, cCaglar Gülccehre, KyungHyun
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