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ABSTRACT

In neuroimaging research, brain networks derived from
different tractography methods may lead to different re-
sults and perform differently when used in classification
tasks. As there is no ground truth to determine which
brain network models are most accurate or most sensitive
to group differences, we developed a new sparse learn-
ing method that combines information from multiple net-
work models. We used it to learn a convex combination
of brain connectivity matrices from 9 different tractogra-
phy methods, to optimally distinguish people with early
mild cognitive impairment from healthy control subjects,
based on the structural connectivity patterns. Our fused
networks outperformed the best single network model,
Probtrackx (0.89 versus 0.77 cross- validated AUC), sug-
gesting its potential for numerous connectivity analysis.

Index Terms— Magnetic Resonance Imaging, Brain
Connectome, Discriminative Fusion, Classification, Mild
Cognitive Impairment

1. INTRODUCTION

With the development of diffusion-weighted magnetic
resonance imaging (dMRI) techniques that can map pat-
terns of connections in the brain, many researchers have
begun to model the brain as a network of interconnected
brain regions, or connectome [16]. The properties of
these networks can then be studied mathematically with
network theory. Mathematically, a brain network at the
macro-scale is typically expressed by a connectivity ma-
trix, in which each element represents some property of
the connection between each pair of brain regions [15].
Based on applying analytical methods from graph the-
ory, the brain exhibits significant group differences in
network properties in various brain diseases such as
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Fig. 1. Different tractography methods detect different
sets of fibers. Here we show the fibers generated by two
tractography algorithms (T-FACT [13] and PICo [14]),
passing through the same brain slice.

bipolar disorder [2, 10], Alzheimer’s Disease [20], and
body dysmorphic disorder [3], among others. These
network-derived features provide clues about how char-
acteristic network disruptions occur and how they may
progress in these brain diseases.

Different MRI scanning modalities offer different in-
formation as a basis to generate maps of the brain’s con-
nectome. Here we focus on brain structural networks de-
rived from diffusion MRI. Diffusion MRI is a variant of
standard anatomical MRI that is sensitive to microscopic
properties of the brain’s white matter that are not de-
tectable with standard anatomical MRI. The general pro-
cess of reconstructing a structural brain network includes
two main steps [21]. The first step extracts the domi-
nant diffusion direction(s) at each voxel based on a dif-
fusion MRI signal model. Some popular models include
the diffusion tensor, the orientation distribution function
(ODF), or a probabilistic mixture of tensors [11], among
others. The next step is whole brain tractography based
on these voxel- level diffusion direction(s). Currently,
there are two main classes of tractography methods: de-
terministic and probabilistic approach. Based on whole
brain tractography result, brain networks can be com-
puted by combining the pattern of fiber tracts with some
specific anatomical partitioning scheme, and measuring
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some property of the connections between each pair of
brain regions, such as their density or integrity.

Theoretically, different algorithmic methods to map
structural connections should ultimately provide a con-
sistent anatomical description of the brain. Even so,
this may not be true in reality. Different tractography
methods recover different sets of fibers (Fig. 1), and
the fiber bundles that best differentiate patients from
controls may be extracted by some algorithms but not
others [19]. Different tract tracking methods vary in
their ability to perform robustly on dataset of different
quality. And there is no general principle to decide which
tractography method or network model is most sensitive
to disease effects in clinical research studies [21]. We
therefore aimed to create a sparse learning framework
to optimally fuse network methods, in an effort to com-
bine different methods’ advantages and boost statistical
power in studies of brain disease.

2. METHODOLOGY

Overview: Fig. 2 summarizes the overview of our fu-
sion approach to build “consensus networks” based on
fusing networks from multiple tract tracing methods.
From diffusion MRI scans of multiple subjects, we ex-
tract different brain networks with whole brain tractogra-
phy. Though our proposed fusion approach is not limited
to structural networks computed from dMRI tractogra-
phy, here we use the nine tractography methods studied
in our previous work [21], which include methods that
are classified as tensor-based deterministic, orientation
distribution function (ODF)-based deterministic, and
probabilistic approaches. Each network reconstruction
method describes brain connectivity from a different per-
spective, and none is universally better than all others for
diagnostic classifications tasks. Therefore when it comes
to building models from diffusion MRI images, it is in-
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Fig. 2. Overview of our network fusion framework. Multiple types of brain networks are computed by applying
different tractography methods to the participants’ diffusion MRI data [21]. Different brain networks are combined
using a sparse learning method and the optimal convex combination is used for classification. The combination
coefficients and the classifiers are simultaneously learned from the training data and cross-validated.

tuitive to fuse different brain networks and leverage the
predictive information from all the networks. However,
the key question is how to fuse the different networks and
build effective predictive models from the fused models.
As far as we know, there is no principled approach pro-
posed to combine networks for use in predictive models.
As shown in the experimental section, simple numeri-
cal averaging of nodal edge weights may not be able to
boost the predictive performance. Instead, we propose to
learn how to fuse the networks from data, such that the
combination gives the optimal predictive performance.
First, we study fused networks computed as a convex
combination of different brain networks. We describe
a new machine learning model to simultaneously learn
the coefficients of the convex combination as well as
the classifier parameters. As a result, the combination
coefficients are learned to maximize the predictive per-
formance of the classifier and meanwhile the classifier is
learned specifically to use the combined network.

Discriminative Fusion: Our proposed discriminative fu-
sion (DFUSE) is a data-driven model that includes a train-
ing stage and a prediction stage. In the training stage the
DFUSE algorithm learns the optimal combination coef-
ficients and a logistic regression classifier from a set of
patients with known medical classification. In the pre-
diction stage, the brain networks from a patient are com-
bined according to the coefficients. The combined net-
work is then used by the classifier to give a prediction for
the medical classification problem.

Formulation. Given a set of diffusion MRI scans
from N patients, we apply different tractography meth-
ods to obtain M brain networks for each participant.
Let xgm) denotes a vector representation of the m-th
brain network for patient ¢ (i € [1,N],m € [1, M]),
in which each element is a numerical representation



of a connection property (e.g., density or integrity) be-
tween two brain regions. We would like to combine
all networks for each participant into a single network
using a convex combination, i.e., the combined network
zi(1) = M 7,x\™, where T = [y ... 7] is the
vector of combination coefficients, and the convex com-
bination gives 211-\,1/[:1 Tm = 1;7,, > 0,VY7,. Convex
combination is one type of linear combination that gives
a clear interpretation on how much each original network
contributes to the fused network. For the /V subjects used
for training, we also have diagnostic label information
storediny = [y1,...,yn], where y; = 1 if the patient is
case and —1 if control.

To learn the combination of the networks, we pro-
pose a machine learning formulation that jointly learns
the classifier parameters and the combination coefficient,
which solves the following optimization problem:

minw,c,‘rzf\;le(waCyT;Xivyvl) +>‘HWH17 2.1

S.t. Z%lem =1;7, > 0,V7,
where w and c are classifier parameters, the constraints
on T ensures a convex combination, the logistic loss is:

Uw,c,T;%x;,y;) =log (1 + exp (—yi(l'i(T)TW +0¢))) -

The ¢;-norm induces sparsity in the parameters w [12,
25, 24, 23], such that the classifier learns a subset of pre-
dictive connections and only uses these connections in
the classifier. The sparsity parameter A controls the spar-
sity of the model. A smaller A allows more connections
to be involved in the model. The optimization problem
in (2.1) can be solved by proximal block coordinate de-
scent [5, 17, 18]. Once the optimization process has con-
verged, we obtain the optimal combination coefficients
T* and classifier parameters w* and c*.

3. RESULTS AND DISCUSSIONS

Dataset. The imaging datasets analyzed for in this study
were collected from 16 sites across the United States and
Canada in the second stage of the Northern American
Alzheimer’s Disease Neuroimaging Initiative (ADNI2).
In total, 124 subjects’ diffusion MRI and structural MRI
data were analyzed. Detailed subject inclusion, exclu-
sion criteria and scanning protocols can be found in the
ADNI2 website. These 124 subjects include 51 normal
elderly controls (NCs), 73 individuals diagnosed with
early mild cognitive impairment (eMCI).

Brain Networks. For each subject, we computed 9
brain networks using nine methods, including 4 tensor-
based deterministic algorithms: FACT (T-FACT) [13],
the second-order Runge—Kutta (T-RK2) method [4],
the tensorline (T-TL) [9], and interpolated streamline
(T-SL) methods [7], two deterministic tractography algo-
rithms based on fourth order spherical harmonic derived

ODFs — FACT (O-FACT) and RK2 (O-RK2), and three
probabilistic approaches: “ball-and-stick model based
probabilistic tracking” Probtrackx (Probt) [6], the Hough
voting method [1] and the probabilistic index of connec-
tivity (PICo) method [14]. Each brain network describes
detected connections between 113 cortical and subcor-
tical regions-of-interest (ROIs), which are defined by
using the Harvard Oxford Cortical and Subcortical Prob-
abilistic Atlas [8]. Therefore we can use a vector of di-
mension 6328 (113 x 112/2) to represent all connections
of distinct ROIs pairs in each network. Please see [21]
for details of computing these nine brain networks.

Experiment Settings. In the first experiment we com-
pared the predictive performance of individual networks,
in terms of area under the ROC curve (AUC), sensitivity
and specificity. These are standard metrics measuring al-
gorithm performance in classification problems. We also
provide two intuitive fusion methods for baseline com-
parisons. The first method concatenates vectors from all
networks (B-CON), resulting in a feature vector of di-
mension 56952. The second method combines the net-
works by averaging of all of the individual networks; this
can be considered as a special case of the general lin-
ear combination (7; = 1/9,Vi). For all the patients, we
used 10-fold cross validation, i.e., each time we use the
brain networks from 90% patients to train a classifier, and
the 10% to test the classifier and compute performance
metrics. For all individual brain networks as well as the
two baseline methods, we use sparse logistic regression
to train classifiers. For the proposed DFUSE, the clas-
sifier is trained using algorithms in Section 2. As the
sample size is too small to generate extra validation data
for model selection (the selection of hyper parameter A
in the sparse logistic regression), we report the best per-
formance for all methods.

Results and Discussion.  Averaged classification re-
sults over 10 iterations are given in Table 1. Our pro-
posed DFUSE algorithm significantly outperformed all
other competing methods (p-value < 0.001). DFUSE has
an average AUC of 0.89, compared to 0.77 achieved by
the best individual method, which used only the Prob-
trackx (Probt) networks. DFUSE also had the highest
average sensitivity of 0.84 and specificity of 0.77, com-
pared to the second highest sensitivity of 0.72 achieved
by tensor-based FACT (T-FACT) and 0.69 by the Prob-
trackx networks. No individual brain network generation
method had a predictive power that was even close to
the one from the fused brain network. This significant
improvement in predictive performance supports our hy-
pothesis about the benefits of fusion for brain networks.

Two other baseline network combination methods



Table 1. Quantitative comparison of classifiers using different
brain networks to predict the early MCI. We compare the per-
formance of each individual brain networks from tractography,
simple network combination, and our network fusion method
(DFUSE). The average and variance of area under the ROC
curve (AUC), sensitivity and specificity over 10 splittings are
reported. The proposed DFUSE significantly outperforms all
other methods on this problem (p-value < 0.001).

AUC Sensitivity Specificity
DFUSE 0.89+0.09 0.84+0.16 0.77+0.07
B-CON 0.58 0.10 0.56 = 0.21 0.50 4+ 0.07
B-AVG 0.55 +£0.15 0.58 +0.20 0.49 4+ 0.08
T-FACT 0.59 £0.11 0.72 £0.25 0.44 +0.14
T-RK2 0.58 £0.11 0.56 £+ 0.25 0.49 +0.10
T-SL 0.62+0.14 0.48 £0.27 0.64 £ 0.26
T-TL 0.58 £ 0.14 0.60 £0.21 0.48 +0.07
O-FACT 0.62 4+ 0.09 0.60 £0.19 0.51 4+ 0.09
0O-RK2 0.60 £0.13 0.60 £0.21 0.53 +0.07
PICo 0.58 +0.10 0.56 = 0.21 0.50 4+ 0.07
Hough 0.66 £0.11 0.64 +£0.23 0.54 £0.11
Probt 0.77 £0.08 0.70 £0.22 0.69 4+ 0.08

Table 2. Combination coefficients T of 9 networks.

network T network T network T

T-FACT 0.025 T-Rk2 0.014 T-SL 0.023
PICo 0.058 Hough 0.010 Probt 0.871
T-TL 0 O-FACT 0 0-RK2 0

also did not perform well: the predictive performance
of the feature concatenation (B-CON) does not even
perform as well as the best individual brain network.
This may be because, for the B-CON method, there are
too many features presented to the classifier (over 56k),
relative to the number of subjects (samples) available to
train it. Only ~110 samples are available here to train
the classifier at every iteration (90% of the total of 124
subjects). On the other hand, the AUC of the simple
average brain network (B-AVG) is 0.55, which is even
poorer than the worst performing brain network T-TL,
at 0.58. Arbitrary combinations of brain networks may
not help for the task of distinguishing early MCI from
NCs. Task specific fusion as proposed in this paper may
be more beneficial.

One attractive property of the proposed DFUSE ap-
proach is that we can obtain an interpretable combina-
tion coefficient 7, indicating how much each of the indi-
vidual brain networks contributes to the final combined
network. The average combination coefficients for all
networks are given in Table 2. We see that in the combi-
nation, Probtrackx has the heaviest weight of 0.871 (all
elements of 7 range from O to 1), averaged over 10 itera-
tions. This is consistent with the finding that Probtrackx
is also the best predictive individual network as shown

in Table 1. On the other hand, the weights of T-TL, O-
FACT, O-RK2 are consistently zeros, i.e., they do not
contribute to the combined network. As such, the com-
bination offers a guide to which tractography methods
to run (clearly not all methods need to be run for prob-
lems where they are given zero weight). Moreover, the
networks with zero weights are not the same as the least
white individual networks (T-RK2, PICo, T-FACT). The
inconsistency shows that networks with weak predictive
power may still have valuable connection information to
complement other better performed networks. It is pos-
sible to leverage clustering analysis [22] and explore dif-
ferent sub-modalities within the networks, and we will
leave this interesting analysis in our future work.

Because of the sparsity introduced on the model w,
we are also able to inspect what are the important con-
nections contributing to the final classifiers. By averag-
ing the non-zero weights for each connection from differ-
ent experiments, we can generate a ranked list of connec-
tions, many of which are previously known to be relevant
to the progression of Alzheimer’s. Here are a few con-
nections that appear in the top of the list: Right Temporal
Pole < Right Precentral Gyrus, Left Pallidum < Left
Caudate, Left Lingual Gyrus <> Left Thalamus, Left Cin-
gulate Gyrus Anterior Division < Left Frontal Medial
Cortex, Right Planum Polare < Right Hippocampus.

4. CONCLUSIONS

In this paper, we developed a new method for discrimina-
tive fusion of multiple brain networks to detect early mild
cognitive impairment (MCI). We simultaneously learned
a convex combination of different brain networks to best
detect early MCI, and a classifier that works with the
combined brain network. As the networks are fused in
a way that maximizes the discriminative power between
normal controls and early MCI subjects, the results from
the fused network significantly improve on single brain
networks as well as simple fusion methods. The much
better predictive performance in terms of detecting early
MCI inspires us to explore network fusion for other pre-
diction tasks such as progression from early to late MCI,
or detecting of genetic effects on brain networks. We
will also further develop more powerful non-linear fusion
methods in our future work. Furthermore, although the
technique we proposed here is demonstrated using brain
networks, it can be applied to any type of network.
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